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INTRODUCTION 
PMAC Overview 
The Delta Tau Data Systems, Inc. Programmable Multi-Axis Controller (PMAC) is a family of high-
performance servo motion controllers capable of commanding up to eight axes of motion simultaneously 
with a high level of sophistication.  Through the power of a Digital Signal Processor (DSP), PMAC offers a 
price-performance ratio for multi-axis control that was not previously available.  Motorola’s DSP56001 is 
the CPU for PMAC, and it handles all the calculations for all eight axes. 

There are four hardware versions of PMAC: the PMAC-PC, the PMAC-Lite, the PMAC-VME, and the 
PMAC-STD.  These cards differ from each other in their form factor, the nature of the bus interface, and in 
the availability of certain I/O ports.  All versions of the card have identical on-board firmware, so PMAC 
programs written for one version will run on any other version.  The PMAC-STD has a different memory 
mapping of some I/O. 

Any version of PMAC may run as a standalone controller, or it may be commanded by a host computer, 
either over a serial port or over a bus port. 

Flexibility 
As a general purpose controller, PMAC can serve in a wide variety of applications, from those requiring 
sub-micro inch precision to those needing hundreds of kilowatts or horsepower.  Its diverse uses include 
robotics, machine tools, paper and lumber processing, assembly lines, food processing, printing, packaging, 
material handling, camera control, automatic welding, silicon wafer processing, laser cutting, and many 
others. 

Configuration for a Task 
PMAC is configured for a particular application by choice of the hardware set (through options and 
accessories), configuration of parameters, and the writing of motion and PLC programs.  Each PMAC 
possesses firmware capable of controlling eight axes.  The eight axes can be associated all together for 
completely coordinated motion; each axis can be put in its own coordinate system for eight completely 
independent operations; any intermediate arrangement of axes into coordinate systems is also possible.  

The PMAC CPU communicates with the axes through specially designed custom gate array ICs, referred to 
as DSPGATES.  Each of these ICs can handle four analog output channels, four encoders as input, and four 
analog-derived inputs from accessory boards.  One PMAC can utilize from one to four of these gate array 
ICs, so specifying the hardware configuration amounts to counting the numbers and types of inputs and 
outputs.  Up to 16 PMAC may be ganged together with complete synchronization, for a total of 128 axes. 

PMAC Is a Computer 
It is important to realize that PMAC is a full computer in its own right, capable of standalone operation 
with its own stored programs.  Furthermore, it is a real-time, multitasking computer that can prioritize tasks 
and have the higher priority tasks pre-empt those of lower priority (most personal computers are not 
capable of this).  Even when used with a host computer, the communications should be thought of as those 
from one computer to another, not as computer to peripheral.  In these applications, the ability of  to run 
multiple tasks simultaneously, properly prioritized, can take a tremendous burden off the host computer 
(and its programmer), both in terms of processor time, and of task-switching complexity. 
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Manual Layout 
This manual provides a quick step-by-step guide for the beginner setting up a typical system, as well as 
explaining how to use the various features available on PMAC.  It is organized by subject (safety, I/O, 
servos, trajectories, etc.) to allow quick access by the area of concern.  The subjects are ordered by the 
typical sequence of events to go through to set up a system.   

The commands are organized in alphabetical order, and the variables, registers, jumpers and connectors are 
in numerical order.  There is extensive cross-referencing between the chapters.  Any variable, command, 
register, jumper, or connector mentioned in chapter 2 is covered in more detail in the appropriate reference 
chapters. 

Reading the chapters, there may be topics or depth of coverage not needed at the time.  Simply skip these 
chapters and proceed to a chapter that is of more immediate use.  

This manual assumes the system integrator who is responsible for this installation knows the basics of 
working in a Microsoft® Windows environment and has more than a basic understanding of electronics, 
machine tool technology, and the PMAC motion control board.  If any questions about a particular aspect 
of the installation arise, do not attempt the task until a thorough understanding is gained.  Feel free to 
contact Delta Tau Data Systems, Inc. Technical Support at any time during installation.  Refer to the 
Technical Support section below for information on contacting our technical support department. 

Conventions Used in This Manual 
The following conventions are used throughout the manual: 

<ENTER> 

<CTRL+F4> 

Text inside arrows is used to represent keyboard keys or key combinations. 

OPEN PROGRAM Mono-spaced is used for code listings. 

Warning Information that, if not observed, may cause serious injury or death. 

Caution Information that, if not observed, may cause damage to equipment or 
software. 

Note A note concerning special functions or information of special interest. 

Safety Summary 
The following are general safety precautions not related to any specific procedures and therefore may not 
appear elsewhere in this publication.  These are recommended precautions that personnel must understand 
and apply during many phases of operation and maintenance. 

Keep Away from Live Circuits 
Do not replace components or make adjustments inside equipment with power applied.  Under certain 
conditions, dangerous potentials may exist when power has been turned off due to charges retained by 
capacitors.  To avoid casualties, always remove power, discharge, and ground a circuit before touching it. 

Live Circuit Contact Procedures 
Never attempt to remove a person from a live circuit with bare hands.  To do so is to risk sure and sudden 
death.  If a person is connected to a live circuit, the following steps should be taken: 

Call for help immediately 
De-energize the circuit, if possible. 
Use a wood or fiberglass hot stick to pull the person free of the circuit. 
Apply cardiopulmonary resuscitation (CPR) if the person has stopped breathing or is in cardiac arrest. 
Obtain immediate medical assistance. 



PMAC User Manual 

Introduction 1-3 

Electrostatic Sensitive Devices 
Various circuit card assemblies and electronic components may be classified as Electrostatic Discharge 
(ESD) sensitive devices. Equipment manufacturers recommend handling all such components in 
accordance with the procedures described in Appendix A.  Failure to do so may void your warranty. 

Magnetic Media 
Do not place or store magnetic media (tapes, discs, etc.) within ten feet of any magnetic field. 

Related Technical Documentation 
 

 

 

 

 
Technical Support 
Delta Tau is happy to respond to any questions or concerns regarding PMAC.  Contact the Delta Tau 
Technical Support Staff by the following methods: 

By Telephone 
For immediate service, contact the Delta Tau Technical Support Staff by telephone Monday through 
Friday.  Our support line hours and telephone numbers are listed below. 

By Fax and E-Mail 
Fax or E-Mail a request or problem to us overnight and we will deal with it the following business day.  
Our Fax numbers and E-Mail addresses are listed below.  Supply all pertinent equipment set-up 
information. 

Bulletin Board Service (BBS) 
In addition, messages can be left on one of the Bulletin Board Services (BBSs). The BBSs are provided for 
customers, distributors, representatives, and integrators, et al.  Download and upload files and read posted 
bulletins and Delta Tau newsletters.  Messages may be left for anyone who is a member/user of the Bulletin 
Board System(s).  A modem and Procomm-Plus or similar communications program is all that is needed to 
use this service.  Many download-upload protocols such as Z-Modem are supported. 

Delta Tau Data Systems, Inc. Technical Support 
Phone: (818) 717-5656 

Fax: (818) 998-7807 
Email: support@deltatau.com 

Website: http://www.deltatau.com 
Delta Tau Europa AG 

Rheinweg 4 
CH-8200 Schaffhausen 

Switzerland 
PH: 41 (0) 52 625 20 88 
FX: 41 (0) 52 625 44 82 

Email: dteuropa@deltatau.com 

 

Manual Number Manual Title 
3A0-602204-363 PMAC & PMAC2 Software Reference 
3A0-602191-363 PMAC-PC Hardware Reference Manual 
3A0-602274-363 PMAC-Lite Hardware Reference Manual 
3A0-602244-363 PMAC-STD Hardware Reference Manual 
3A0-602199-363 PMAC-VME Hardware Reference Manual 
3A0-602812-363 Mini PMAC Hardware Reference Manual 

mailto:support@deltatau.com
mailto:support@deltatau.com
http://www.deltatau.com/
mailto:dteuropa@deltatau.com
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PMAC Japan 
3-6-7, Nihonbashi Ningyocho 

Chuo-Ku 
Tokyo 103 

Japan 
PH: 011-81-3-3665-6421 
FX: 011-81-3-3665-6888 

Email: info@pmac-japan.co.jp 
Website: www.Pmac-japan.co.jp 
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GETTING STARTED WITH PMAC 
Overview  
PMAC is a very flexible controller, suitable for many different types of applications, with different types of 
hosts, amplifiers, motors, and sensors.  As such, the card must be configured for a specific application, 
using both hardware and software features, in order to run that application properly.  (PMAC is shipped 
from the factory with defaults set in hardware and software setup to be satisfactory for the most common 
application types.) This section explains this configuration process for the inexperienced user. 

Note 

The PMAC Setup (PS) program that is provided on the Executive program diskette 
walks you through each of these steps in an interactive fashion.  Use of that program 
may enable you to skip this part of the manual. 

By following this procedure, those unfamiliar with PMAC should be able to get the 
card going quickly and reliably.  Once more acquainted with the card, these tasks 
may be performed in a different order and some of the checking steps may be 
skipped to perform the installation more quickly. 

The Getting Started section is a quick introduction to exercise the basic functionality 
of the card.  Each of the areas dealt with in this section is also covered in later 
chapters in more detail. 

Preparing the Card 
First, inspect the card for any signs of damage.  PMAC was thoroughly tested, burned in, and tested again 
(including actually running motors), before it left the factory, but there always exists the (remote) 
possibility of shipping damage.  If any visible damage is seen, report this to Delta Tau immediately. 

E-Point Jumpers 
On the PMAC, there are many jumpers (pairs of metal prongs) called E-points (on the bottom board of the 
PMAC-STD they are called W-points)  Some have been shorted together; others have been left open.  
These jumpers customize the hardware features of the board for a given application.  The PMAC was 
shipped with jumpers configured for the needs of a typical user, so it can be started initially without 
changing any jumpers.  However, we will check a few jumpers here to make sure they are correct before 
we start.   

In the Hardware Reference manual for the version of the board is a map of the jumper locations and a 
detailed description of each jumper's function.  Check the jumpers according to the instructions and refer to 
the map.  For more detailed instructions on changing any setting than what is given below, refer to the 
detailed jumper descriptions. 

Card Number Jumpers 
The PMAC was preset in the factory at card number (software address) 0 by the jumper configuration of 
E40 - E43 on the PMAC-PC, -Lite, and -VME which should all be ON (for the PMAC-STD this is 
controlled by DIP switches SW1-1 to SW1-4 which should all be OFF).   

The card number is important for two reasons.  First, if several cards are daisy-chained together on the 
serial interface, it is the software addressing that determines which card should send data and receive 
commands.  Second, card 0 creates its own servo clock signal; all the other cards receive the servo clock 
signal from the outside as a synchronizing signal. If they do not receive it, they will shut down.   

Each set of synchronized PMAC cards must have one, and only one, card 0.  For the initial setup with 
PMAC, it is advised that the card be set at software address 0.  If this must be changed, refer to the detailed 
E-point description. 
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Communications Baud Rate Jumpers 
The PMAC was shipped configured to be able to communicate either over the bus interface, or over the 
serial interface at 9600 baud.  The communications setting is controlled by jumpers E44-E47 on the 
PMAC-PC, -Lite, and -VME, and by DIP switches SW1-5 to SW1-8 on the PMAC-STD. 

If communicating over the bus port for the initial setup of the board, the settings of these jumpers is not 
important.  However, if the initial communications is over the serial port, make sure these jumpers enable 
the serial port and provide the baud rate you desire.  (The Setup program and Executive program do have 
automatic baud rate search algorithms.  

As sent from the factory, E44 and E47 should be OFF, while E45 and E46 should be ON (on PMAC-STD, 
SW1-5 and SW1-8 should be ON; SW1-6 and SW1-8 should be OFF).  PMAC can receive commands 
from both the bus and serial ports. (Keep commands on the two ports from overlapping.)  PMAC powers 
up or resets in a mode to respond over the serial interface, but any character received over the bus interface 
changes the mode so it will respond over the bus interface instead.  A <CTRL-Z> character received over 
the serial port changes PMAC back to responding over the serial port.  If the default jumper setting must be 
changed, refer to the detailed E-point description. 

PCbus Address Jumpers 
PMAC-PC and PMAC-Lite are shipped from the factory set to communicate over the PC-bus at I/O 
address 528 decimal (210 hex).  This setting is controlled by jumpers E91-E92 and E66-E71 located on the 
rightmost of the lower-edge bank of jumpers (for this default address, E91-E92 are ON, E66 is OFF, E67-
E70 are ON, and E71 is off). Unless there is a conflict at this address, start using the first card at this 
address.  If the address must be changed, change the jumpers as shown in the detailed E-point descriptions 
in the Hardware Reference manual.  

STDbus Address Jumpers 
PMAC-STD is shipped from the factory set to communicate over the STD-bus at I/O address 61,584 
decimal (F090 hex).  This setting is controlled by jumpers W11 to W22 on the bottom circuit board (for 
this default address, W11-W14 are OFF, W15-W18 are ON, W19 is OFF, W20-W21 are ON, and W22 is 
OFF).  Unless there is a conflict at this address, start using the first card at this address.  If the address must 
be changed, change the jumpers as shown in the detailed E-and W-point descriptions in the Hardware 
Reference manual. 

PMAC-VME Interface Setup 
The VMEbus interface is set up by writing to PMAC registers through the serial port.  If using the PMAC-
VME, the initial development is done by communicating to the PMAC over the serial port from an IBM-
PC or compatible host.  Follow the directions for using the serial port.  Information for setting up the VME-
bus interface is provided in the Writing a Host Communications Program section of this manual. 

Encoder Jumpers 
PMAC can take either non-differential (single-ended A, B, C) or differential inputs (A, A/, B, B/, C, C/) 
from encoders.  As shipped from the factory, the card is set up for non-differential encoders, individually 
selectable by jumpers E18-E21 (not available on PMAC-Lite or PMAC-STD) and E24-E27.  In this setup 
with pins 1 and 2 of each E-point connected, the main signal line is pulled up to +5V with a 470 ohm 
resistor, and the complementary lines are held at +2.5V with 1 kohm pull-up and pull-down resistors, 
allowing them to be a steady comparison point for the signal lines.  If using single-ended encoders, leave 
the complementary lines (A/, B/, and C/) floating, so PMAC can hold them at 2.5V. Do not ground these 
inputs. 

If using single-ended encoders, have the jumpers set up for non-differential.  If using differential encoders 
with open-collector drivers on each channel (this is rare), have the jumpers set up for differential (pins 2 
and 3 connected, providing an effective 500 ohm pull-up on the complementary line).  If using encoders 
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with differential line drivers, the jumpers can be set either way, although it is preferable to have them set 
for differential to balance the lines. 

Note 

If not using a certain encoder input, it is better to leave it jumpered for single-ended 
input; otherwise it is much more likely to pick up extraneous noise as count 
information. 

Analog Circuit Jumpers 
On PMAC, the analog output circuitry can be optically isolated from the digital logic circuitry for noise 
reduction purposes.  PMAC is shipped from the factory with the circuits optically isolated (E85, E87, and 
E88 OFF).  It is recommended that the card be used in this configuration, but it is possible to jumper the 
bus supply voltage (+/- 12V) over to the analog circuitry by putting these jumpers ON, defeating the optical 
isolation, but eliminating the need for an separate power source. 

Isolated Setup 
With the optical isolation in effect, it is necessary to provide separate power supply to the analog output 
circuitry.  On the JMACH connectors, the A+15V analog supply should be brought in on pin 59, the A-15V 
analog supply on pin 60, and the analog ground (AGND) on pin 58.  (Jumper E89 should be ON, and 
Jumper E90 should connect Pins 1 and 2 to permit this +15V to pull up the limit-switch and other optically 
isolated inputs, which is required for PMAC to command motion.  PMAC is shipped with E89 and E90 in 
this configuration.)  Most amplifiers provide supply outputs for this purpose.  Alternatively, an external 
supply may be used.   

Non-Isolated Setup 
The +12V and -12V bus supplies may be used to power the analog output circuitry by jumpering them 
across to the analog side with E85 (+12V), E87 (Analog GND), and E88 (-12V); however, this defeats the 
isolation and connects the whole computer electrically to the amplifier. This is not recommended, and 
should only be done for low power systems.  To power the flags from the bus +12V supply as well, Jumper 
E90 must be moved to connect Pins 2 and 3, so the +12V can pull up the limit-switch and other optically 
isolated inputs. 

Re-initialization Jumper 
If the card powers up or resets with jumper E51 in its default state (OFF for PMAC-PC, -Lite, and -VME; 
ON for PMAC-STD), PMAC will go through its normal reset cycle, utilizing the setup parameters (such as 
I-variables that were previously saved in EAROM.  

Standard and Option 5 PMACs 
If a PMAC with the Standard or Option 5 CPU powers up or resets with E51 in the non-default state (ON 
for PMAC-PC, -Lite, and -VME; OFF for PMAC-STD), PMAC will re-initialize as it resets, utilizing the 
factory default parameters.  Usually, this setting will be used only if the card software and parameters are 
so confused that even basic communications is impossible.  For startup, make sure this jumper is in its 
default state. 

PMAC with Options 4A, 5A, and 5B 
If the jumper E51 is ON when a PMAC with the Option CPU executes its reset cycle, PMAC enters a 
special re-initialization mode that permits the downloading of new firmware.  In this mode, the PMAC can 
communicate over the serial port only at a baud rate of 38,400, regardless of the setting of the baud rate 
jumpers.  Bus communications is also possible on PMAC with bootstrap version 1.01 and newer (most 
PMAC have one of these versions).  To verify the bootstrap version, type the command VER while 
communicating to PMAC in bootstrap mode. 

To bypass the download operation in this mode, send a <CONTROL-R> character to PMAC.  This puts 
PMAC in the normal operational mode with the existing firmware.  Factory default values for I-variables, 
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conversion table settings, and bus addresses for DPRAM and VME are copied from the firmware section of 
flash memory into active memory.  The saved values of these values are not used, but they are kept in the 
user section of flash memory. 

For more information on PMAC bootstrap mode and downloading new firmware, refer to the PROM 
Update Specification sheet included with the PROM. 

Connecting PMAC to the Host Computer 
Bus Connection 

Caution 

With the board plugged into the bus, it will pull +5V power from the bus 
automatically.  In this case, there must be no external +5V supply, or the two 
supplies will fight each other, possibly causing damage. 

With computer power off, plug the PMAC into an open bus slot.  The PMAC-Lite requires one slot on the 
bus, the PMAC-PC requires 1-1/2 slots (permitting a half-size board in the next slot), the PMAC-VME 
requires two slots (one double slot), and the PMAC-STD requires two slots for the 4-channel version, and 
three slots for the 8-channel version.   

Serial Port Connection 
For serial communications, use a serial cable to connect the PC’s COM port to the PMAC serial port 
connector (J4 on PMAC-PC, -Lite, and -VME; J1 on PMAC-STD's bottom board).  Delta Tau provides 
cables for this purpose: Accessory 3D connects PMAC-PC or -VME to a DB-25 connector; ACC-3L 
connects PMAC-Lite to a DB-9 connector; and ACC-3S connects PMAC-STD to a DB-25 connector.  
Standard DB-9-to-DB-25 or DB-25-to-DB-9 adapters may be needed for a particular setup. 

If using the ACC-26 Serial Communications converter, connect from the PC COM port to ACC-26 with a 
standard DB-9 or DB-25 cable, and from ACC-26 to PMAC using the cable provided with ACC-26.  Since 
the serial ports on PMAC-PC and PMAC-VME are RS-422, this accessory can provide the level 
conversion between RS-232 and RS-422 (communications is possible without this conversion, but at 
reduced noise margin).  Because the conversion is optically isolated, the accessory also helps prevent noise 
and ground loop problems. 

Note 

If the PMAC is not plugged into a bus, it will need an external 5V supply to power 
its digital circuits.  The +5V line from the supply should be connected to pin 1 or 2 
of the JMACH connector (usually through the terminal block), and the digital 
ground to pin 3 or 4. 

Installing the PMAC Executive Program 
The initial communications to the card will be done with Delta Tau’s PMAC Executive program (PE) or 
the accompanying PMAC Setup (PS) program, which are provided on a diskette (ACC-9D or 9W).  The 
diskette contains an Install utility to make this easy.  Refer to the Executive Program section in the PEWIN 
User’s Manual, 3A00OPEWIN-363, for details. 
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Establishing Host Communications 
Either the Executive or Setup program can be used to establish initial communications with the card.  Both 
programs have menus that tell the PC where to expect to find the PMAC and how to communicate with it at 
that location.  If it is told to look for PMAC on the bus, also tell it the PMAC base address on the bus (this 
was set up with jumpers on PMAC).  If it is told to look for PMAC on a COM port, tell it that the baud rate 
(this was set up with jumpers or switches on the PMAC).  The Executive program (ACC-9W) does have an 
automatic baud rate search to find out how the card is set up. 

Instructions for setting up the communications are given in detail in the PMAC Executive for Windows 
User’s manual, 3A0-0PEWIN-363, p1 Setup Manual, 3A0-1SETUP-363, and P2 Setup Manual, 3A0-
2SETUP-363.  Refer to those manuals for more explanation. 

Once the program has been told where and how to communicate with PMAC, it will attempt to find PMAC 
at that address by sending a query command and waiting for the response.  If it gets the expected type of 
response, it will report that it has found PMAC. 

If it does not get the expected type of response after several attempts, it will report that it has not found 
PMAC. 

Terminal Mode Communications 
Once the program reports that it has found PMAC, and a key has been pressed to escape the Found/Not- 
Found window, the program should be in terminal emulation mode, so that the PC is acting as a dumb 
terminal to PMAC.  Check to see if a response is received by typing I10<CR> (<CR> means carriage 
return, the Enter or Return key).  PMAC should respond with a six or seven digit number.  Now type 
III<CR>. PMAC should respond with a beep, signifying an unrecognized command and the error-code 
ERR003 if the I-variable I6 is set to its default value of three.  For more information on the error-codes, 
refer to the explanation of I-Variable I6 in PMAC and PMAC2 Software Reference Manual, 3A0-602705-
363. 

Next, if satisfied that communications with the card is at a basic level, type a P <CR> (case does not 
matter). This command requests a position.  PMAC should respond with a number, probably a 0.  Now type 
a <CONTROL-F.  Eight numbers (one for each axis) should appear since <CONTROL-F> requests 
following error from all eight motors; some or all may be 0.   

Note 

Even with encoder counts as read-out (no scaling) PMAC position is displayed with 
fractional counts. 

Connecting PMAC to the System 
Once the basic operation of the card and the host communications have been established, it is time to 
connect PMAC to the amplifier, motor, and feedback device.   

Of course, most PMAC systems will have more than one motor attached.  The process described here can 
be repeated for multiple motors.  As our example here, we will discuss the setup of motor #1.  The 
procedure is parallel for any other motors. 

There are many combinations of amplifier types, motor types and feedback device types that can be 
connected to PMAC, each requiring a somewhat different procedure.  The easiest connection is that of a 
DC motor and amplifier with an incremental encoder.  That is what is described first here.  Other options 
will be discussed later, or in other sections. 
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Typically, connections are made to a terminal block that is attached to the JMACH connector by a flat 
cable (Acc- 8D or 8P).  The pinout numbers on the terminal block are the same as those on the JMACH 
connector for PMAC-PC.  Make sure PMAC is unpowered while the connections are being made.  Leave 
any loads disconnected from the motor at this point.  

Machine Connectors 
The primary machine interface connector is JMACH1 (J8 on PMAC-PC, J11 on PMAC-Lite, P2 on 
PMAC-VME, J4 on PMAC-STD top board).  It contains the pins for four channels of machine I/O: analog 
outputs, incremental encoder inputs, and associated input and output flags, plus power-supply connections.  
These four channels can be used for two to four motors, depending on the configuration.  Our example will 
use this connector. 

The next machine interface connector is JMACH2 (J7 on PMAC-PC, P2A on PMAC-VME, J4 on the 
middle board of an 8-channel PMAC-STD, not available on a PMAC-Lite).  It is essentially identical to the 
JMACH1 connector for two to four more axes.  It is only present if the PMAC card has been fully 
populated to handle eight axes (Option 1), because it interfaces the optional extra components. 

Note 

While the numbering scheme for the pins on machine connectors on PMAC-VME is 
different from that for PMAC-PC, the physical arrangement is the same, and 
PMAC-VME can use the same terminal numbers on the terminal block board. 

Connecting the Analog Power Supply 
The analog output circuitry on PMAC is optically isolated from the digital computation circuitry, and so 
requires a separate power supply.  This is brought in on the JMACH connector.  The positive supply (+12 
to +15 volts) should be brought in on the A+15V line on pin 59. The negative supply (-12 to -15V) should 
be brought in on the A-15V line on pin 60.  The analog common should be brought in on the AGND line on 
pin 58.   

Typically, this supply can come from the servo amplifier. Many commercial amplifiers provide such a 
supply.  If this is not the case, an external supply may be used.  Even with an external supply, the AGND 
line should be tied to the amplifier common. 

As mentioned before, it is possible to get the power for the analog circuits from the bus, but doing so 
defeats optical isolation.  In this case, no new connections need to be made.  However, be sure jumpers 
E85, E87, E88, E89, and E90 are set up for this circumstance as explained previously in the Preparing the 
Card section.  (The card is not shipped from the factory in this configuration.) 

Incremental Encoder Connection 
Each JMACH connector provides two +5V outputs and two logic grounds for powering encoders and other 
devices.  The +5V outputs are on pins 1 and 2; the grounds are on pins 3 and 4.  The encoder signal pins are 
grouped by number: all those numbered 1 (CHA1, CHA1/, CHB1, CHC1, etc.) belong to encoder #1.  The 
encoder number does not have to match the motor number, but usually does.  If the PMAC is not plugged 
into a bus and drawing its +5V and GND from the bus, use these pins to bring in +5V and GND from the 
power supply. 

Connect the A and B (quadrature) encoder channels to the appropriate terminal block pins.  For encoder 1, 
the CHA1 is pin 25, CHB1 is pin 21.  If using a single-ended signal, leave the complementary signal pins 
floating. Do not ground them.  For a differential encoder, connect the complementary signal lines (CHA1/ 
is pin 27, and CHB1/ is pin 23).  The third channel (index pulse) is optional; for encoder 1, CHC1 is pin 17, 
and CHC1/ is pin 19. 
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Amplifier Connection 
If PMAC is not performing the commutation for the motor, only one analog output channel is required to 
command the motor.  This output channel can be either single-ended or differential, depending on what the 
amplifier is expecting. 

Single-Ended Command Signal 
For a single-ended command using PMAC channel 1, connect DAC1 (pin 43) to the command input on the 
amplifier.  Connect the amplifier’s command signal return line to PMAC AGND line (pin 58).  In this 
setup, leave the DAC1/ pin floating. Do not ground it. 
Differential Command Signal 
For a differential command using PMAC channel 1, connect DAC1 (pin 43) to the plus-command input on 
the amplifier.  Connect DAC1/ (pin 45) to the minus-command input on the amplifier.  PMAC AGND 
should still be connected to the amplifier common. 

Sign and Magnitude Command Signal 
If the amplifier is expecting separate sign and magnitude signals, connect DAC1 (pin 43) to the magnitude 
input.  Connect AENA1/DIR1 (pin 47) to the sign (direction input).  Amplifier signal returns should be 
connected to AGND (pin 58).  This format requires some parameter changes on PMAC; refer to variable 
Ix02 and Ix25 below.  Jumper E17 controls the polarity of the direction output; this may have to be 
changed during the polarity test. 

Motor Commutated by PMAC 
If using PMAC to commutate the motor, use two analog output channels for the motor.  Each output may 
be single-ended or differential, just as for the DC motor.  The two channels must be consecutively 
numbered, with the lower-numbered channel having an odd number (e.g., use DAC1 and DAC2 for a 
motor, or DAC3 and DAC4, but not DAC2 and DAC3, or DAC2 and DAC4). 

For motor #1 example, connect DAC1 (pin 43) and DAC2 (pin 45) to the analog inputs of the amplifier.  
Do not worry about the phasing polarity yet; it will be checked later.  If using the complements as well, 
connect DAC1/ (pin 45) and DAC2/ (pin 46) the minus-command inputs; otherwise leave the 
complementary signal outputs floating.  To limit the range of each signal to +/- 5V, do so with parameter 
I169, as discussed below. 

Auxiliary Connections 
There are several other lines for each motor that are important.  These are: 

Limit Signals (+LIMn and -LIMn) 
PMAC has two inputs for each motor intended for the hardware overtravel limit switches.  These lines must 
actively be held low (to draw current through the LED in the optoisolator) in order for the motor to able to 
move.  This requires the use of normally closed (or normally conducting, if solid state) limit switches.  
These inputs are direction sensitive; they only stop movement in one direction. 
To implement limit switches, wire the -LIM1 input (pin 53) to one side (positive-voltage end if there is a 
polarity) of the limit switch expected to be on the positive end of travel; wire the +LIM1 input (pin 51) to 
the equivalent side of the limit switch expected to be on the negative end of travel.  Wire the other side of 
the limit switches (negative-voltage end if there is a polarity) to PMAC AGND (pin 58), unless keeping the 
flags on the digital circuit side, isolated from the analog circuitry, in which case, wire the other side to 
PMAC GND line (pins 3 and 4). 
If not using limit switches (e.g., for a rotary axis, or for a preliminary test set-up), either tie the limits (pins 
51 and 53) to analog ground (pin 58), or disable the limit function in software (refer to variable Ix25, 
below). 
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Note 

The direction polarity of the limit pins is the opposite of what many would consider 
intuitive.  That is, the limit switch at the positive end of travel should be wired into 
the -LIM input, and the limit switch at the negative end of travel should be wired 
into the +LIM input.  If the direction input of the encoder is ever changed, the wiring 
of the limit switches must be changed as well.  It is important to check and re-check 
the direction sense of the limit inputs. 

Amplifier Enable Signal (AENAx/DIRn) 
Most amplifiers have an enable/disable input that permits complete shutdown of the amplifier regardless of 
the voltage of the command signal.  PMAC AENA line is meant for this purpose.  If not using a direction 
and magnitude amplifier or voltage-to-frequency converter, use this pin to enable and disable the amplifier 
(wired to the enable line).  AENA1/DIR1 is pin 47.  This signal is an open-collector output and requires a 
pull up resistor to A+15V.  For early tests, this amplifier signal may be under manual control.  The polarity 
of the signal is controlled by jumper(s) E17.  The default is low-true (conducting) enable. 

Home Flag Signal (HMFLn) 
A home switch can be wired between this pin (HMFL1 is pin 55) and analog ground (AGND), or if 
powered from the bus, to digital ground (GND).  The switch may be normally open or normally closed; 
open is high (1), and closed is low (0).  The polarity of the edge that causes the home position capture is 
programmable with Encoder I-Variables 2 and 3 (I902 and I903 for HMFL1). 

Amplifier fault signal (FAULTn) 
This input can take a signal from the amplifier so PMAC knows when the amplifier is having problems, 
and can shut down action.  The polarity is programmable with I-variable Ix25 (I125 for motor #1) and the 
return signal is analog ground (AGND). FAULT1 is pin 49.  With the default setup, this signal must be 
actively pulled low for a fault condition.  In this setup, if nothing is wired into this input, PMAC will 
consider the motor not to be in a fault condition. 

Software Setup for a Motor 
PMAC has a large set of Initialization parameters (I-variables) that determine the personality of the card for 
a specific application. Many of these are used to configure a motor properly. Once set up, these variables 
may be stored in non-volatile EAROM memory (using the SAVE command) so the card is always 
configured properly (PMAC loads the EAROM I-variable values into RAM on power-up).  

Run the PMAC Executive Program on the PC.  The value of an I- variable may be queried simply by typing 
in the name of the I- variable.  For instance, typing I900 <CR> causes the value of the I900 to be 
returned.  The value may be changed by typing in the name, an equals sign, and the new value (e.g. 
I900=3<CR>). 

Note 

Remember that if any I-variables are changed during this setup, use the SAVE 
command before powering down or resetting the card, or the changes that were 
made will be lost. 

Alternatively, use the I-variable pages (under the Configuration menu) to view and change these variables 
in a more user-friendly fashion. 
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Encoder I-Variables 
Several I-variables are linked to particular encoder inputs, regardless of which motor the encoder is 
assigned to.  These control how the encoder signal is interpreted.  They are numbered in the 900s: I900-
I904 belong to Encoder 1, I905-I909 belong to Encoder 2, and so on, to I975-I979 belonging to Encoder 
16.  Initially we will only concern ourselves with the first encoder I-variable. 

I900, I905, I910, Etc. 
These control the decoding of the encoder signal into counts.  Quadrature x1, x2, and x4, plus pulse and 
direction decode, are all possible.  PMAC is shipped with counterclockwise x4 decode set up (I900, I905, 
... = 7).  Check this value for Encoder 1 (I900), and change it to 7, if it is different. 

I901, I906, I911, etc. 
Encoder digital filter disable — This controls whether the digital delay filter for noise spike elimination is 
turned on.  PMAC is shipped with the filters on (I901, I906, ... = 0). 

I902, I907, I912, etc. 
Encoder position capture control — This controls which transitions of those associated encoder signals 
trigger a position capture for that encoder.  This must be used for homing moves. It can also be used for 
other purposes.  It specifies an edge of the encoder third channel, the edge of one of the encoder flags, or 
the edge of a logically combined signal from both.  If it uses a flag, also set the next variable.  The default 
value for this variable is 1 specifying the rising edge of the third channel. 

I903, I908, I913, etc. 
Encoder flag select control — This controls which of the encoder flags is used to trigger a position 
capture if the previous I-variable has specified that a flag be to be used.  This is almost always set to 0 to 
specify the home flag (HMFLn). 

Motor I-variables 
PMAC can be attached to up to eight motors, called #1 to #8.  A motor is defined in PMAC by setting up I-
variables that tell the I/O addresses of the input and output data (where to look for the feedback position, 
and where to send the output command).   

The I-variables for motor #1 are in the 100s (I100-I184); for motor #2 in the 200s, and so on, to the 800s 
for motor #8.  As a shorthand to refer to a particular variable independent of a particular motor, the 
hundreds digit is replaced with the letter x.  For instance, Ix20 refers to I120 for motor 1, or I220 for motor 
2, and so on. 

In this example, set up motor #1.  In preparation, disable motor #1 by cutting power to the amplifier. 

Motor Activation 
The first thing to do in the software setup of a motor is to activate the software algorithms for the motor by 
setting Ix00 to 1.  For Motor #1, set I100 to 1. 

For PMAC-Commutated Motors Only 
If using PMAC to commutate this motor, set up the commutation algorithm I-variables at this point.  First, 
set I101 to 1 to tell PMAC that motor #1 is to be commutated by PMAC.   

Analog Outputs 
Tell PMAC which pair of analog outputs are being used to command the amplifier.  Do this by setting Ix02 
to the lower address of the pair of outputs that have been wired to the amplifier.  To tell motor 1 to use 
DAC1 and DAC2 in the example, set I102 to $C002 (49154). 
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Commutation Encoder 
The encoder register used for commutation feedback must be specified with Ix83.  The default value of 
Ix83 specifies Encoder 2x-1; e.g. ENC1 for Motor #1, ENC3 for Motor #2, and ENC15 for Motor #8.  The 
actual value of Ix83 is the address of the phase position register for that encoder.  For ENC1 (Motor #1), 
this value is 49153 ($C001).  If setting up a PMAC-commutated Motor #1 using ENC1, make sure I183 is 
set equal to 49153 ($C001). 

Counts per Commutation Cycle 
Next, determine the number of encoder counts per commutation cycle (per pole pair).  I900 defines an 
encoder count here (1, 2, or 4 counts per line).  For instance, if using a 2500 line per revolution encoder 
with x4 decode and a 4-pole motor, the calculation would be:  (2500 lines/rev) * (4 counts/line) / (2 pole-
pairs/rev) = 5000 counts/pole-pair. 

If this value is an integer, set I170 to 1, and set I171 to the value.  If the value is not an integer (for 
example, a 6-pole motor and a 1024-line encoder), figure out the integer multiplier required to make it an 
integer (usually 3).  In this case, set I170 to the multiplier, and I171 to the multiplied integer value. 

Angle Between Phases 
If it is a 3-phase motor, set I172 to 85.  This tells PMAC that the two phases are 85/256 (1/3) cycle apart.  
This may be changed later to 171 if the polarity of the signals are wrong.  If it is a 4-phase motor, set I172 
to 64 (64/256 = 1/4); the may be changed later to 192. 

Phase Search Parameters 
Now, if using a brushless DC (synchronous AC) motor, establish the parameters for the power-up phase-
finding search.  Initially, set I173 (the magnitude of the phase-finding output) to 8192 which is one-quarter 
of full output.  Next, set I174 (the time for each half of the phase-finding routine) to 5 servo cycles.  These 
can be optimized later.  Now make sure the induction motor parameters I177 and I178 are set to 0, so 
PMAC will not think this is an induction motor. 

Slip Gain and Magnetization Current 
If using an AC induction motor, do not worry about power-up phase finding. Set I173 and I174 to 0.  Also, 
set I177 (magnetization current) and I178 (slip gain).  Initially, set I177 to 3200 (1/10 full current) and I178 
to 2500 (for a low-slip motor) or 5000 (for a high-slip motor).  These can be optimized later.  The fact that 
I178 is greater than zero prevents a phasing search, so I173 and I174 are irrelevant. 

For Motors Not Commutated By PMAC 
If PMAC is not performing the commutation for the motor, set Ix01 to 0 so that the commutation routines 
are disabled and only one analog output is used.  In the example using motor 1, set I101 to 0.  This is the 
default. 

DAC Output Address 
If not commutating from PMAC, Ix02 must be set to the register address of the single analog output used to 
command the amplifier.  Define the output register address for motor #1 using I102.  In order to send the 
motor 1 output command to the DAC1 pin connected, set I102 address $C003 (49155 decimal).  This is the 
default value.  If the amplifier is expecting sign and magnitude input, set I102 to $1C003 instead. 

For All Types of Motors 
Regardless of whether PMAC is commutating the motor or not, several variable values must be established 
to tell PMAC where to get its servo loop information. 

Position-Loop (Load) Feedback Address 
Variable Ix03 defines the register to be used for the position-loop servo feedback.  Typically, this reads a 
processed encoder value from what is known as the encoder conversion table.  To have motor 1 read the 
processed input from Encoder 1, I103 must be set to 1824 ($720).  This should be the value preset at the 
factory. 
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Velocity-Loop (Motor) Feedback Address 
It is possible to have separate motor and load feedback encoders (this can allow good control even with 
poor coupling).  In this case, the sensor on the load is used to close the position loop; it is addressed by 
Ix03 above.  The sensor on the motor is used to close the velocity loop; it is addressed by Ix04.  The vast 
majority uses only one feedback encoder, whether it is on the motor, or on the load.  For these, Ix04 will be 
set to the same value as Ix03, addressing the same encoder.  If only using one feedback encoder (ENC1) for 
the Motor #1 in the example, make sure I104 is set to 1824, just as I103 is (this is the default). 

Flag Address 
Now, make sure the card knows where to look for its limit and home flag inputs, which is controlled by 
I125 (remember that this is essential to command a move).  To use +LIM1, -LIM1, and HMFL1, I125 
should be set to ($C000) 49152.  This should be the value set at the factory.  If not using overtravel limit 
switches and the limit pins have not been wired to ground, set I125 to $2C000 instead. 

If the amplifier is expecting sign (direction) and magnitude command, disable the use of AENAn/DIRn as 
an amplifier-enable line so it can be used for direction.  For motor 1, set I125 to $1C000.  If the limits 
should be disabled, set I125 to $3C000. 

Reading Position 
Now start checking on some basic motor functions.  First, try to read motor position.  With the Executive 
program in terminal mode, type #1<CR> to address motor 1.  Next, type P<CR>, and PMAC should return 
a position value to the terminal screen.  Now turn the motor shaft by hand and type P<CR> again.  The 
reported position should have changed.  (Alternately, use the F7 position reporting window of the PMAC 
Executive program, which automatically polls position repeatedly.)   

Repeat this as often as needed to verify that the position counting is working properly in both directions.  If 
it is not, check the following: 

• Is the encoder receiving power (+5V and GND)? 
• Are both quadrature channels connected properly? 
• If single-ended, are the complementary lines floating? 
• If single-ended, is E27 (or equiv.) in default setting? 
• If differential, has E27 been changed? 
• Is the motor activated (I100=1)? 
• Is I103 set to the proper encoder input? 
• Is I900 set for proper decode of the signal? 
• Can a signal be detected with a scope or voltmeter? 

Changing Position Direction 
If getting position feedback, but want to change the positive and negative directions, use I900 (for ENC 1) 
to change the direction sense (or exchange the Channel A and Channel B inputs).  For example, if I900 is 7, 
changing it to 3 will change the direction sense. 

Setting DAC Output Range 
Check the output range by looking at I169.  This is the maximum value that can be written to the DAC, 
whose full range is -32,768 to +32,767 (16 bits for +/- 10V).  The default value of I169 is 20,480, which is 
about +/-6.25V.  If the amplifier is expecting +/-10V and the full range is being used, set I169 to 32,767.  If 
the amplifier is expecting a differential signal with up to +/- 10V between the lines (each line is +/-5V), set 
I169 to 16,384 or less. 
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Testing the Output and Polarity 
Next, check the outputs and whether the output polarity matches the feedback polarity.  To do this, provide 
power to the amplifier.  First, have PMAC disable its own outputs for the motor by typing K<CR> (kill).  
Make sure that the motor has no load at this point so that uncontrolled motion cannot damage anything.  
Now provide power to the amplifier. 

PMAC-Commutated Motors 
If PMAC is commutating this motor, get the polarity of the commutation feedback and the phased 
commutation outputs to match.  If the feedback polarity direction has been set to get it to count up when 
moving in the proper direction, test whether the phasing polarity of the outputs as set by I172 is correct. 
(There is a 50% chance of having this correct.) 

Permanent-Magnet Brushless Motors 
If using a permanent-magnet brushless motor, check the polarity match by a technique that drives the motor 
like a stepper motor.  First, type O0<CR> (open-loop output of zero magnitude).  Then type 
I129=2000<CR>, which puts an offset on one of the phases, forcing current through it.  Note the position 
of the motor in this state.  Next type I179=2000<CR>, which puts the same offset in the next phase.  
Note the position again, and determine whether it counted up or counted down since the first check. 

If the position counted down, I172 should be set to 85 for a 3-phase motor, or 64 for a 4-phase motor.  If 
the position counted up, I172 should be set to 171 for a 3-phase motor or 192 for a 4-phase motor.  Before 
continuing, make sure to set the offset parameters I129 and I179 back to 0. 

Induction Motors 
If this motor is an induction motor, check the polarity by trying to run the motor with both polarities 
(settings of I172), and seeing which produces satisfactory results.  Type $<CR> to initiate the phasing of 
the motor.  Now type O10<CR> (open-loop output 10%) and see if the motor spins well (even if it does not 
accelerate quickly).  The position should be counting up.  Next, kill the output temporarily with K<CR> and 
change the output polarity by giving I172 a new value (e.g. if it was 85, change it to 171).  Now type 
O10<CR> again and observe the response.  Kill the motor again and set I172 to the value that gave decent 
response.  If there is no movement with either setting, check the troubleshooting guide immediately above. 

Non-PMAC Commutated Motors 
If PMAC is not doing the commutation for a motor, make sure that the servo feedback and output polarities 
match.  Do this by giving the motor an open-loop output command and seeing which way the position 
counts.  Type O10<CR> (open-loop output 10%).  The position counter should count up.  If it counts down, 
there is a polarity mismatch.  Now type O-10<CR>.  The position counter should count down.  If it counts 
up, there is a polarity mismatch.  If the counter does not count in opposite directions for the two tests, there 
is an encoder and/or amplifier problem. 

If there is a polarity mismatch, there will be a potentially dangerous runaway condition when trying to 
close the loop.  To fix this, change I900 (e.g. from 7 to 3, or 3 to 7) to reverse the counting sense.  This will 
change the positive direction of the axis. Alternatively, exchange the motor leads instead. 

If there is no movement, check the voltage on the output pin.  It should be approximately 1V relative to 
AGND.  If it has not changed, recheck I102, the analog power supply, and the limit-input configuration.  If 
the voltage has changed but there is still no movement, recheck the amplifier and motor connections.   

Overtravel Limit Polarity 
Make sure as the direction sense of the motor is verified the hardware position limit switches are wired into 
the proper inputs.  That is, the limit switch on the positive (counting up) end of travel must be wired into 
the -LIMn input, and the switch on the negative end must be wired into the +LIMn input.  If these are 
reversed, the hardware limit functions will not work. 
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Setting up the Servo Loop 
Warning 

Make sure the motor is in open-loop mode before restoring the proportional gain. 
Otherwise, it may lurch to an old commanded position. 

This is enough to see if the motor is working.  Make sure the motor can run free (preferably no plant 
attached at this point) and that things can be stopped quickly so that no damage can be caused.  Type 
K<CR> to disable the output(s), then restore the proportional gain by setting I130 (try 2000 initially for 
very fine resolution systems, 50,000 for very coarse systems, or somewhere in between for medium 
resolution). 

Closing the Loop 
Now close the motor’s servo loop by typing J<CR> (the jog-stop command, which brings the motor into 
zero-velocity position control).  It should hold position at this point, resisting attempts to move it away, at 
least gently.  If it runs away, there is a mismatched polarity; re-run the above polarity tests.  If there is loss 
of control or the motor starts behaving wildly, type K<CR> to disable the motor. 

Weak Loop 
If it does not resist being turned, or does so very weakly, try increasing proportional gain (I130).  Try 
doubling it until there is some reasonable stiffness, but do not try yet to get the maximum possible stiffness.  
The tests described below will help do that. 

Oscillations 
If the motor has a tendency to oscillate at low to moderate frequency, there is inadequate derivative gain.  
Try doubling I131 and see if the oscillation goes away. 

Buzzing 
If the motor has a tendency to oscillate at high frequency (a "buzz"), there is too much proportional gain, or 
maybe too much derivative gain.  Try lowering I130 (or I131) until the buzz disappears. 

Extensive Servo Loop Tuning 
The PMAC Executive Program for PC-compatibles has a large section devoted to assisting the user in 
optimizing the servo loop parameters for a motor.  It allows performance of step moves and profiled moves 
and the response is plotted to the screen with key statistics calculated, so that easy choices may be made 
about changing gains.  This process is documented in detail with examples in the manual for the PMAC 
Executive Program. 

In addition, there is an auto-tuning feature that lets the Executive program make the decisions about what 
the gains should be.  The program excites the system, evaluates the response, and calculates the gains 
necessary to achieve the desired response.  Remember that precise tuning cannot be done until the load has 
been connected to the motor.  Our goal at this point is simply to get the motor moving reasonably well 
without a load. 

Jogging Moves 
With these two parameters (I130 and I131) at reasonable levels, good performance in moves should be 
achieved.  Try a jog move first.  Before doing the move, set up the jog speed (I122, in counts/msec) 
acceleration time (I120, in milliseconds), and S-curve time (I121, in msec) to desired values (to be safe, use 
low speed and high acceleration times at first).  Now type J<CR> — the motor should turn in the positive 
direction.   
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Type J<CR> and the motor should stop.  If it takes a while to stop, either slow down the move next time or 
increase I130 to reduce the error.  J-<CR> should cause the motor to turn in the negative direction, and 
J<CR> should stop it again.  J=<CR> should cause the motor to jog to the last pre-jog position and stop 
there automatically. 

Optimizing Jog Performance 
If your jog speed seems slower than desired, one or more of PMAC automatic safety limit parameters may 
have been used, particularly if there is a fine-resolution system.  The first of these is I119, which is the 
maximum permitted motor jog acceleration, expressed in counts/msec

2
.  The default value is quite low for 

most systems.  Increase it several orders of magnitude for now to get it out of the way.  

Velocity Feedforward Gain 
When jogging at constant speed, monitor following error and increase velocity feedforward gain (I132) to 
minimize the following error.  If there is a current-loop amplifier, set I132 equal to I131 or just slightly 
greater. 

Integral Gain 
To eliminate steady-state error, bring in some integral gain.  Set I133 to 10,000.  This should provide weak 
integral action, but enough to eliminate steady-state error over a few seconds.  Now try increasing I133 
some more to get quicker action.  It should be safe to raise it in increments of 10,000 to get the performance 
needed (quick restoration of commanded position without introducing oscillation).  If there is oscillation, 
reduce the integral gain until the oscillation is eliminated. 

If there is no effect from adding integral gain, check the integration limit parameter I163.  If this is low 
(100,000 or less), it will limit what integral gain can do.  If this is the problem, set this parameter to its 
default value by typing I163=*<CR>. 

Power-Up Mode 
For future power-up/reset cycles, set I180 so power up is done in the mode wanted.  If I180 is zero, Motor 
#1 will power up "killed" (0V output, AENA signal false).  It will not attempt to control until a servo 
command is given (usually J, A, or <CTRL-A) for a non-PMAC-commutated motor, or a $ command for a 
PMAC-commutated motor.  This I-variable must be stored in non-volatile memory (with the SAVE 
command) to be effective at the next power-up/reset cycle. 

Homing Search Move 
To do a homing search move, first check the position-capture I-variables (I902 and I903 in the example).  
Make sure they are set up to capture the position where the home position should be.  With a bare motor, 
only use the third channel of the encoder.  Set I902 to 1 to force a capture on the rising edge of the third 
channel.   

Next, set the homing speed with I123 (in units of counts/millisecond).  Changing the sign of I123 changes 
the direction of the homing move.  Homing accel/decel is controlled by I120 and I121 (which also affect 
jog moves).  Now command a homing move with the HM command, and the motor will move as specified 
until the proper signal edges is found, then decelerate to a stop and come back to the position of the trigger, 
plus or minus an offset amount determined by I126. 

Setting up a Coordinate System 
In order to run a program on PMAC, first define a coordinate system. These motors execute a program.  
For this example, set up coordinate system 1. 

Defining an Axis 
Type &1<CR>.  This will address coordinate system 1.  (Confirm which coordinate system is addressed by 
typing &<CR> and PMAC will return the number of the currently addressed coordinate system.)  Next, type 
#1->X<CR> (the arrow between 1 and X is comprised of the minus sign and the greater- than symbol; 
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there should be no space before the arrow).  This matches the X axis of coordinate system 1 (&1) to motor 
#1.  As it is here, one unit in X is one encoder count.   

Scaling an Axis 
To scale the X units, place a scale factor before the X in the definition statement.  (i.e., this axis definition 
statement is what defines the scale of the user position units.) For instance, if using a 500-line encoder on 
the motor, with 4X decoding (refer to I900), and a 5-pitch (five turns per inch) screw converting to linear 
motion, yielding 10,000 counts/inch, use the command #1->10000X to define the X axis in inches. 

Multiple Axes 
Caution 

Every motor in the coordinate system must have its limit inputs held low in order for 
any program to run in that coordinate system, even if the program does not use that 
motor.   

If another motor is set up, include it in this same coordinate system.  For instance #2->10000Y matches 
the second motor to the Y-axis in this coordinate system at 10,000 counts per user unit.  This is about all 
there is to defining a coordinate system.  If a motor is assigned to a coordinate system, make sure that both 
its limits are held low, either through switches or directly to AGND (nothing else for that motor needs to be 
connected). 

Define the time units to work in (I190 for coordinate system 1).  This parameter holds the number of 
milliseconds in the time units being used.  For instance, to specify the velocity in user position units per 
second (e.g., inches/sec), set I190 to 1000 (this should be the default).  To work in minutes (e.g. rpm), set 
I190 to 60,000. 

Writing a Motion Program 
With the coordinate system(s) defined, begin to write a program.  Open a program buffer for entry by 
typing OPEN PROG 1<CR>. and CLEAR<CR> to erase anything that might exist in the buffer.  Now the 
program lines entered will be held in program buffer 1.  A program to do a simple back-and-forth 
trapezoidal move will look like this (with comments): 
LINEAR   ; Linear interpolation mode 
ABS    ; Absolute move mode 
F2.00    ; 2 inches/sec 
X10.0    ; move to X = 10 inches 
X0.0    ; move back to X = 0 inches 

If the X-axis is defined with a 1-to-1 scaling {#1->X}, this program would only cause a 10 count move 
over 5 seconds {and back}, which might not be noticeable. 

The acceleration time for the moves is controlled by Ix87, and the S-curve portion of that acceleration time 
is controlled by Ix88 (for the coordinate system x that is running the program). 
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When finished entering the program, type CLOSE <CR> to exit the program buffer.  To enter a new 
program in the place of the one in the buffer, open the buffer, type CLEAR, and enter the new program.  An 
example follows: 

OPEN PROG 1 
CLEAR    ; erase old program 

F2.36    ; 2.36 in/sec 
X5.346 Y0   ; first side of square 
X5.346 Y5.346  ; second side 
X0 Y5.346   ; third side 
X0 Y0    ; fourth side 

CLOSE 

Using the Program Editor 
It is easiest to type programs using the program editor in the PC Executive (terminal) Program.  Here the 
program can be changed at will, and then it can be downloaded to the card by selecting the Download 
Editor to PMAC menu option, or by hitting <ALT-D> when the editor screen is displayed.  Include in each 
program space the lines to open the buffer, to clear out the old program, and to close the buffer at the end. 

Executing A Motion Program 
Starting the Program 
With a program held in PMAC buffer, it is easy to run. To run program 1, make sure the coordinate system 
to run the program is addressed (&1 in this case), type B1<CR> (point to beginning of program 1), then 
type R<CR>.  The B command with a number makes the specified program the working (operative) 
program for the coordinate system.  The R command will start execution of the program. 

Stopping the Program 
There are several ways to stop a running program.  Q<CR> (Quit) stops the program at the end of the 
presently executing move.  A<CR> (Abort) causes the motors in the coordinate system to start decelerating 
immediately.  Both of these commands leave the program ready to execute (run or step) the next line in the 
program. To re-start the program at the beginning, type B<CR> (the B command without a number operates 
on the current working program).  This resets the program counter to the top (completion of a program 
automatically resets the counter to the top). 

Remember that the motor velocity and acceleration limits (Ix16 and Ix17) are in effect for all motors in the 
coordinate system.  If a motor is asked to exceed one of these limits, all motors in the coordinate system are 
slowed to honor the limit.  If the programmed moves seem slower than what as expected, this could be the 
cause. 

Refining the Program 
Few times will the program work exactly right the first time.  Go through an iterative process of editing, 
downloading, executing, and evaluating.  This is one of the key reasons for using the program editor.  The 
required changes can be made in the editor without re-typing the entire program. Then, the entire revised 
program can be downloaded to PMAC.  This process is why it is a good idea to have the CLEAR command 
immediately after the OPEN command: it erases the old version in PMAC so the new version can replace it. 

There is no reason in this process to upload the program from PMAC.  The program editor maintains its 
copy even after the download, and it keeps comments with it.  The only reasons to upload a program are to 
confirm that it is downloaded properly, and to restore a program that was lost by the host computer. 
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Writing and Executing a PLC Program 
PLC programs are useful for doing monitoring and calculations in background, asynchronously to any 
motion programs.  They are written much like motion programs, and have much of the same language 
(although no motion commands).  There can be up to 32 PLC programs, which can be enabled and disabled 
individually.  The enabled programs cycle through continually in background, as time allows. 

Start by writing a simple PLC program that increments a variable each time through.  Using either 
Terminal mode or (preferably) the Program Editor in the Executive Program, type the following: 
CLOSE 
OPEN PLC 1 

CLEAR 
P1=P1+1 
CLOSE 

If using the Editor, download what has been written to PMAC by selecting the Download Editor to PMAC 
menu option, or by typing <ALT-D>. 

Now, see if the program got to PMAC properly.  From the Terminal mode, type LIST PLC 1<CR>.  The 
following response should appear: 
P1=P1+1 

RETURN 

PMAC automatically adds a RETURN statement {short form: RET} to the end of a program when it gets a 
CLOSE command.  The OPEN, CLOSE, and CLEAR commands are not actually part of the program; they 
are on-line commands to control the program buffer operation. 

Starting the PLC Program 
Now type I5=2<CR>.  This permits PLCs 1 to 31 to be enabled.  Next type ENABLE PLC 1. This should 
actually start operation of the PLC program.  The variable P1 should be incrementing steadily.  Verify this 
by repeatedly typing P1<CR>.  The reported value should be greater each time.  If it is not, recheck the 
value of I5, the listing of the program, and try re-enabling the PLC. 

Other things can be happening in between cycles of the PLC program.  Reset the value of P1 by typing 
P1=0<CR>.  PMAC will execute this command, and then PLC 1 will start incrementing the value again 
from that point. 

Motion programs can be run simultaneously.  Re-run the motion program and notice that P1 keeps 
incrementing during the operation of the motion program. 

Stopping the PLC Program 
To halt operation of the PLC program, type DISABLE PLC 1.  Note that repeated queries of P1’s value 
yield the same answer.  ENABLE PLC 1 will re-enable operation of the program. 

Each time a PLC program buffer is opened for editing, the program is automatically disabled.  Closing the 
buffer does not automatically re-enable the program.  When working on a PLC program with the program 
editor, follow the CLOSE command with an ENABLE PLC 1 command, so that this command does not 
need to be re-typed every time the edited PLC program is downloaded to PMAC.  
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1. PMAC FEATURES  
Executing Motion Programs 
The most obvious task of PMAC is executing sequences of motions given to it in a motion program.  
When told to execute a motion program, PMAC works through the program one move at a time, 
performing all the calculations up to that move command (including non-motion tasks) to prepare for 
actual execution of the move.  PMAC is always working ahead of the actual move in progress, so it can 
blend properly into the upcoming move, if required.  Refer to the Writing Programs for PMAC section of 
this manual for more details. 

Executing PLC Programs 
The sequential nature of motion program suits it well for commanding a series of moves and other 
coordinated actions; however these programs are not good at performing actions that are not directly 
coordinated with the sequence of motions.  For these types of tasks, PMAC provides the capability for 
users to write PLC programs.  These are named after Programmable Logic Controllers because they 
operate in a similar manner, continually scanning through their operations as fast as processor time 
allows.  These programs are very useful for any task that is asynchronous to the motion sequences.  Refer 
to the Writing Programs for PMAC section of this manual for more details. 

Servo Loop Update 
In an automatic task that is essentially invisible to the PMAC user, PMAC performs a servo update for 
each motor at a fixed frequency (usually around 2 kHz).  The servo update for a motor consists of 
incrementing the commanded position (if necessary) according the equations generated by the motion 
program or other motion command, comparing this to the actual position as read from the feedback 
sensor, and computing a command output based on the difference.  This task occurs automatically without 
the need for any explicit commands.  Refer to the Closing the Servo Loop section of this manual for more 
details. 

Commutation Update 
If PMAC is requested to perform the commutation for a multiphase motor, it will perform commutation 
updates automatically at a fixed frequency (usually around 9 kHz).  The commutation, or phasing, update 
for a motor consists of measuring and/or estimating the rotor magnetic field orientation, then apportioning 
the command that was calculated by the servo update among the different phases of the motor.  This task 
occurs automatically without the need for any explicit commands.  Refer to the Setting Up PMAC 
Commutation section of this manual for more details. 

Housekeeping 
PMAC regularly and automatically performs housekeeping tasks that make sure the system is in good 
working order.  These tasks include the safety checks, such as following error limits, hardware overtravel 
limits, software overtravel limits, and amplifier faults.  They also include the update of the watchdog 
timer.   

If any problem in hardware or software keeps these tasks from executing, the watchdog timer will trip, 
and the card will shut down.  Refer to the Making Your Application Safe section of this manual for more 
details. 
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Communicating With the Host 
PMAC can communicate with the host at any time, even in the middle of a sequence of motions.  PMAC 
will accept a command, and take the appropriate action (putting the command in a program buffer for 
later execution), providing a data response to the host, starting a motor move, etc.  If the command is 
illegal, it will report an error to the host. 

Task Priorities 
These tasks are ordered in a priority scheme that was optimized to keep applications running efficiently 
and safely.  While the priority levels are fixed, the frequency at which various tasks are performed is 
under user control.  Refer to the Setting Up PMAC Commutation and Closing the Servo Loop sections of 
this manual for more details.  
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TALKING TO PMAC 
Basic Aspects Of Communicating With PMAC 
This section covers basic aspects of communicating with PMAC from a host computer.  At this level, 
there is a program for the host computer that processes these communications.  The PMAC Executive 
Program (Accessory 9D) is the most common of these programs.   

If there will be a host computer in the final application, communications routines must be written for the 
host computer as part of the front-end software for the application.  That is a more advanced topic, and it 
is covered in the Writing a Host Communications Program section of this manual.  This section 
concentrates on the actual communications. 

At a basic level, PMAC can communicate to a host dumb terminal, either over the serial (RS-422) or the 
parallel (bus) interface.  The communications mostly consists of lines of ASCII characters sent back and 
forth.  Of course, most of the time the host will be a computer with considerably more intelligence, but at 
root it will talk to the card as if it were a terminal.  The PMAC Executive PC program has a terminal 
emulator mode to do this directly. 

Communications Ports 
Each version of PMAC can communicate either over its serial port or its parallel (bus) port.  The main 
difference between the different hardware versions of PMAC is the type of bus interface: PC, STD, or 
VME. 

Note 

It is important not to command PMAC simultaneously from both ports; the 
characters can be intermixed and the commands garbled. 

Active Response Port 
Either the serial port or the bus port is the active response port, where PMAC will send its responses to 
the commands.  PMAC powers up/resets with the serial port as the active response port.  However, any 
command received over the bus port makes the bus port the active response port (this happens 
immediately in most bus-host applications, so is transparent to the user).  Further responses are returned 
to the bus port. 

A subsequent command from the serial port does not automatically make the serial port the active 
response port again, so it is possible that PMAC will respond to a command over the serial port by 
sending data to the bus port.  This will probably confuse both host computers.  To make the serial port the 
active response port again, you must send a <CTRL-Z character to PMAC. 

Caution 

If using a bus-based system with an auxiliary computer over the serial port to do 
some diagnostic work, such as data gathering or tuning with the PMAC Executive 
Program, it is important to stop bus communications. 

Serial Interface 
The hardware configuration for the PMAC serial interface port is slightly different on different versions 
of PMAC.   
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Hardware Configuration PMAC-PC, -VME 
PMAC-PC and -VME have an RS-422 interface on a 26-pin IDC connector (J4).  This port connects 
directly to a standard DB-25 connector on a host computer with a straight-across 26-strand flat-cable 
connector.  For a DB-9 host connector, a standard 9-to-25-pin adapter should be used on the other end of 
the cable. 

PMAC-Lite 
PMAC-Lite has an RS-232 interface on a 10-pin IDC connector (J4).  This port can connect directly with 
a standard DB-9 connector on a host computer with a straight 10-strand flat-cable connector.  For a DB-
25 host connector, a standard 25-to-9-pin adapter should be used on the other end of the cable.  For an 
RS-422 interface, the Option 9L piggyback board can be added.  This provides a DB-25 connector for the 
RS-422 port.  The RS-232 port is disabled. 

PMAC-STD 
PMAC-STD has both an RS-232 interface on a 5-pin SIP connector (bottom board J1) and an RS-422 
interface on a 20-pin mini-IDC connector (bottom board J3).  Only one of these interfaces should be 
connected at any one time. 

PMAC1.5-STD 
PMAC1.5-STD has an RS-232 interface on a 5-pin SIP and a 10-pin IDC connector; the 10-pin connector 
can connect directly with a standard DB-9 connector on a host computer with a straight-across 10-strand 
flat cable.  It also has an RS-422 interface on a 26-pin IDC connector, which can connect directly with a 
standard DB-25 connector on a host computer with a straight-across 26-strand flat cable. 

RS-422 vs. RS-232 
The PMAC RS-422 serial interface is very similar to the RS-232 interface that most PCs have.  RS-422 
has differential 0 to +5V signals, whereas RS-232 has single-ended -10 to +10V signals.  The PMAC RS-
422 receivers accept inputs from RS-232 well, with significant noise margin.  Most PCs’ RS-232 
receivers can read the PMAC RS-422 signals quite well, but noise margin tends to be minimal, and 
communications in this direction can be garbled, especially in the presence of PWM amplifiers.  For 
robust communications to an RS-232 host, PMAC Accessory 26 provides conversion capabilities and 
optical isolation.   Of course, direct connection to a host RS-422 port can be made. 

Baud Rate 
The serial-port baud rate is determined at power-up by jumpers E44-E47 (PMAC-PC, -Lite, 1.5-STD, -
VME) or switches SW1-1 to SW1-4 (PMAC-STD), and the PMAC master clock rate.  Serial baud rate 
can be set up to 76,800 baud on a 20 or 40 MHz board, up to 115,200 baud on a 30 or 60 MHz board.  If 
E44- E47 are all ON (SW1-1 to SW1-4 all OFF), the serial port is disabled. 

Signal Lines 
Since serial interfaces vary from system to system, PMAC provides a simple but flexible interface.  In 
addition to the signal ground, only four lines are required (eight counting the complements): data-
transmit, data-receive, clear-to- send, and ready-to-send.  These pairs of lines may be exchanged through 
jumpers (E9-E16), if necessary, to match the host configuration.  PMAC simply shorts together the DSR 
and DTR lines to provide an automatic return signal on this strobe for those systems that require it.  
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Data Format 
The serial communications data format is eight bits, one start bit, one stop bit, with no parity if jumper 
E49 is ON, or odd parity if jumper E49 is OFF (opposite for PMAC-STD).  PMAC can echo back to the 
host each character it receives from the host; the <CTRL-T command toggles this function on and off.  
No XON/XOFF handshaking is supported.  Line-by-line checksums can be computed. Variable I4 
controls this function. 

PC bus Interface 
The PC bus interface for the PMAC-PC and the PMAC-Lite can work with just the PC-XT bus (eight bits 
wide).  The additional AT-bus connecter is provided, but it can only be used to access the additional AT 
interrupt lines.  One PMAC occupies 16 addresses in the PC’s port I/O space.  The base address of this 
space is determined by jumpers E91-E92 and E66-E71.  Of course, the address should be chosen so as not 
to conflict with anything else in the PC.  The factory default setting is for address 528 (210 hex).  The 
Jumper Description section contains a thorough mapping of a typical PC's I/O mapping and likely empty 
addresses. 

Characters are passed one at a time through one of these addresses.  The software to support this interface 
is very similar to that for the serial port.  Of course, characters can be sent much faster over the bus port.  
The Option 2 dual-ported RAM board provides 8k x 16 bits of shared memory for passing data back and 
forth between PMAC and the host computer.  The data path for this memory is 16 bits wide, and so 
supports the AT bus directly. 

STD bus Interface 
The bus interface for the PMAC-STD works virtually identically to the PC bus interface on the PMAC-
PC or -Lite.  The interface can work with either the original 8-bit STD bus, or the new 32-bit STD32 bus.  
It occupies 16 words in the I/O space of the host computer.  The base address of these 16 words is 
determined using jumpers W11-W22 on the baseboard of the PMAC-STD.  The factory default setting is 
for address 61,584 (F090 hex).  The Jumper Description section contains a thorough mapping of a typical 
STD bus computer's I/O mapping and likely empty addresses. 

The new PMAC1.5-STD does not support the 32-bit features of STD32, although it will work in either 
STD80 or STD32 buses with 16-bit addressing.  On the PMAC1.5-STD, the DIP switch bank S1-1 to S1-
12 controls the address of the board on the STD bus. 

VME bus Interface 
The PMAC-VME interfaces to the VME bus as a slave device.  Commands and responses are sent 
through a set of 16 8-bit mailbox registers.  Binary data can be passed through the on-board Option 2V 
dual-ported RAM (8k x 16 bits).  The data bus is eight bits wide for the mailbox, and 16 bits wide for the 
DPRAM.  The address bus can be configured for 16, 24, or 32 bits.  The address and nature of this 
interface must be set up through the serial port by writing to registers in PMAC, saving the values to non-
volatile memory, and resetting the card.  Typically for this model of board, the initial setup and 
development is done through the serial port with an IBM-PC or compatible, using the supplied PMAC 
Executive program.  Instructions for setting up the VME bus interface are given in the Writing a Host 
Communications Program section of this manual. 
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Giving Commands to PMAC 
PMAC is fundamentally a command-driven device, unlike other controllers that are register driven.  
PMAC will do things if it is issued ASCII command text strings. Generally, PMAC provides information 
to the host in ASCII text strings. 

PMAC Processing of Commands 
When PMAC receives an alphanumeric text character over one of its ports, it does nothing but place the 
character in its command queue.  It requires a control character (ASCII value 1 to 31) to cause it to take 
some actual action.  The most common control character used is the carriage return (<CR>; ASCII value 
13), which tells PMAC to interpret the preceding set of alphanumeric characters as a command and to 
take the appropriate action.   

Note 

If using the Option 2 dual-ported RAM, command PMAC by writing values to 
specific registers in the DPRAM. PMAC can provide information by placing 
binary values in these registers, but the ASCII commands must have been sent 
already to PMAC that cause it to take the proper action when these values are 
received, and to place the values in these registers. 

Control Characters 
Other control characters cause PMAC to take an action independent of the alphanumeric characters sent 
before it.  These control characters can be sent in the middle of a line of alphanumeric command 
characters without disturbing the flow of the command.  PMAC will respond first to the control-character 
command, storing the text string until the <CR> character is received. 

Command Acknowledgement 
The exact nature of the PMAC acknowledgement of commands and its data response is controlled by I-
variables I3, I4, and I9, with I3 as the most important.  If I3 is 1, PMAC acknowledges a valid 
alphanumeric command by sending the line-feed (<LF>; ASCII value 10) character back to the host.  If 
I3 is 2 or 3, it uses the <ACK> character (ASCII value 6) instead.  If I3 is 0, it does not provide any 
acknowledging character.  Regardless of the setting of I3, PMAC responds to an invalid command by 
returning the <BELL> character (ASCII value 7). 

When working interactively with PMAC in terminal mode, it is often nice to use the <LF> as 
acknowledgement because it spaces commands and responses automatically on the terminal screen. 

Data Response 
When the command received requires a data response, PMAC will precede each line of the data response 
with a line feed character if I3 is set to 1 or 3.  It will not do so if I3 is set to 0 or 2.  PMAC will terminate 
each line of the data response with a carriage return character regardless of the setting of I3.  For these 
commands, the command acknowledgement character — <LF> or <ACK> — is sent after the data 
response, serving as an end-of-transmission character.  For computer parsing of the response, the <ACK> 
should serve as a unique EOT character. 

Data Integrity 
Variable I4 determines some of the data integrity checks PMAC performs on the communications, the 
most important of which is a line-by-line checksum.  The Writing a Host Communications Program 
section covers this feature in detail. 
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Data Response Format 
Variable I9 controls some aspects of how PMAC sends data to the host.  Its setting determines whether 
PMAC lists program lines back to the host in long or short form, whether it reports I-variable values and 
M-variable definitions as full command statements or not, and whether address I-variable values are 
reported in decimal or hexadecimal form. 

On-Line (Immediate) Commands 
Many of the commands given to PMAC are on-line commands; that is, they are executed immediately by 
PMAC to cause some action, change some variable, or report some information back to the host.  The 
command itself is thrown away after executing (so cannot be listed back), although its effects may stay in 
PMAC. 

Some commands, such as P1=1, are executed immediately if there is no open program buffer, but are 
stored in the buffer if one is open.  Other commands, such as X1000 Y1000, cannot be on-line 
commands; there must be an open buffer, even if it is a special buffer for immediate execution.  These 
commands will be rejected by PMAC (reporting an ERR005 if I6 is set to 1 or 3) if there is no buffer 
open.  Still other commands, such as J+, are on-line commands only, and cannot be entered into a 
program buffer (unless in the form of CMD"J+", for instance). 

Types of On-Line Commands 
There are three basic classes of on-line commands:  

• Motor-specific commands, which affect only the motor that is currently addressed by the host.  
• Coordinate-system-specific commands, which affect only the coordinate system that is currently 

addressed by the host  
• Global commands, which affect the card regardless of any addressing modes.   

In the reference chapter, each command is classified into one of these types under the Scope descriptor. 

Motor-Specific Commands 
Motor Addressing 
A motor is addressed by a #n command, where n is the number of the motor, with a range of 1 to 8, 
inclusive.  This motor stays the one addressed until another #n is received by the card.  For instance, the 
command line #1J+#2J- tells Motor 1 to jog in the positive direction, and Motor 2 to jog in the 
negative direction (like most commands, the jog command does not take effect until the carriage return 
character is received, so both axes start acting on the command at roughly the same time in this case). 

Note 

Each program that can use the COMMAND statement to issue on-line commands 
from within the card has its own motor and coordinate system addressing, 
independent of which motor and coordinate system the host is addressing.  
Changing the host’s addressing mode(s) does not affect the program’s, or vice 
versa.  Also independent of the host addressing, the control panel selects a motor 
and coordinate system for its hardwired inputs to affect with its BCD-coded (low-
true) FDPn/ lines (determined by a rotary switch on Delta Tau’s ACC-16 Control 
Panel). 
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Motor Commands 
There are only a few types of motor-specific commands.  These include the jogging commands, a homing 
command, an open loop command, and requests for motor position, velocity, following error, and status.  

Coordinate-System-Specific Commands 
Coordinate System Addressing 
A coordinate system is addressed by a &n command, where n is the number of the coordinate system, 
with a range of 1 to 8, inclusive.  This coordinate system remains the one addressed until another &n 
command is received by the card.  For instance, the command line &1B6R&2B8R tells Coordinate 
System 1 to run Motion Program 6 and Coordinate System 2 to run Motion Program 8.   

Coordinate System Commands 
There are a variety of types of coordinate-system-specific commands.  Axis definition statements act on 
the addressed coordinate system, because motors are matched to an axis in a particular coordinate system.  
Since it is a coordinate system that runs a motion control program, all program control commands act on 
the addressed coordinate system.  Q-variable assignment and query commands are also coordinate system 
commands, because the Q-variables themselves belong to a coordinate system. 

Note 

A command to a coordinate system can affect several motors if more than one 
motor is assigned to that coordinate system.  For instance, if motor 4 is assigned to 
coordinate system 1, a command to coordinate system 1 to run a motion program 
can start motor 4 moving. 

Global Commands 
Some on-line commands do not depend on which motor or coordinate system is addressed.  For instance, 
the command P1=1 sets the value of P1 to 1 regardless of what is addressed.  Among these global on-line 
commands are the buffer management commands.  PMAC has multiple buffers, one of which can be open 
at a time.  When a buffer is open, commands can be entered into the buffer for later execution.   

Control character commands (those with ASCII values 0 - 31D) are always global commands.  Those that 
do not require a data response act on all cards on a serial daisy-chain.  These characters include carriage 
return <CR>, backspace <BS>, and several special-purpose characters.  This allows, for instance, 
commands to be given to several locations on the card in a single line, and have them take effect 
simultaneously at the <CR> at the end of the line (&1R&2R<CR> causes both Coordinate Systems 1 and 2 
to run). 

Buffered (Program) Commands 
As their name implies, buffered commands are not acted on immediately, but held for later execution.  
PMAC has many program buffers — 256 regular motion program buffers, 8 rotary motion program 
buffers (1 for each coordinate system), and 32 PLC program buffers.  Before commands can be entered 
into a buffer, that buffer must be opened (e.g., OPEN PROG 3, OPEN PLC 7). 

Each program command is added onto the end of the list of commands in the open buffer; to replace the 
existing buffer, use the CLEAR command immediately after opening to erase the existing contents before 
entering the new ones.  After finishing entering the program statements, use the CLOSE command to 
close the opened buffer. 
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Rotary Motion Program Buffer 
The rotary motion program buffer is a special program buffer that can execute motion programs at the 
same time it is open for entry of program commands from the host computer.  If an open rotary program 
buffer is executing, but has already executed every command sent to it, it will execute the next buffered 
program command sent to it almost immediately. 

Multiple-Card Applications 
If there are several cards communicating with the host, there must be a way for the host to distinguish 
between the different cards.  The host computer must be able to talk to each of the cards individually, and 
sometimes to talk to the cards collectively.  Therefore, the host must have a means of addressing the 
cards. 

This section covers the basic concepts of communications issues dealing with multiple cards.  For more 
detailed information, refer to the Writing a Host Communications and Synchronizing PMACs to Other 
PMACs sections of this manual.   

Bus Communications 
When the interface is a bus-type interface (e.g., PC-bus, STD-bus or VME-bus), the distinction between 
cards is taken care of by hardware addressing.  This means that the different cards respond to different 
bus address locations as selected by the bus address lines  The setup of the hardware addressing of 
multiple cards is done just as it is for single cards (above); one simply cannot put two different cards at 
the same hardware address on the bus. 

Simultaneous Commands 
A little trickier task is to initiate simultaneous action on all boards, because commands must be issued 
sequentially to the different boards.  However, characters can be sent to all of the boards in sequence so 
quickly that this delay will not be the major limitation in keeping action simultaneous between the boards.   

The commands should be sent so that everything except the carriage return character is sent to all of the 
boards; then the <CR> command is sent to each board in rapid succession.  (If checking for the write-
ready bits, make sure they are true on all boards before sending the character to any board.)  On a typical 
bus system, send these characters one microsecond apart.  This is much faster than the approximately one 
millisecond software scan time of the command interpreters on PMAC, so the commands are effectively 
issued simultaneously. 

Serial Communications 
However, if serial communication is being used (RS-232 or RS-422), the daisychaining of PMAC does 
not permit separate hardware addressing, so there must be a software addressing scheme.   

PMAC cards equipped with PROM version 1.13 and higher are capable of daisychained communication 
using the RS-422 port.  PMAC-Lites and PMAC-STDs cannot use daisychained communication with the 
RS-232 port; the RS-422 port is required (Option 9L for PMAC-Lite).  Up to 16 PMAC cards can be 
connected and synchronized using serial port communications.  To do this however, a few hardware and 
software set up procedures must be followed. 

Connections 
When using serial communications to multiple PMACs from a single host serial port, the connection is 
made through a single multi-drop daisy chained cable.  At one end is the connector for the host computer 
(usually a DB-25 connector).  At the other end of the cable is one connector (drop) for each PMAC on the 
chain.   Each strand of the cable is brought out on the same pin of each connector.   



 PMAC User Manual 

4-8 Talking to PMAC 

Multi-Drop Cable 
The PMAC-STD has both a RS-232 port and a RS-422 port.  If daisy chaining is desired, the RS-422 port 
must be used.  Delta Tau does not provide this cable. The ACC-3D cable provides serial connection to the 
RS-422 port of a single PMAC-PC or PMAC-VME, and each ACC-3E ordered with it provides an extra 
drop for an additional PMAC-PC or PMAC-VME. If connected to an RS-232 port of a host computer, it 
is strongly recommended that an ACC-26 or similar converter be used, especially in multi-drop 
applications.   

Note  

The Option 9L RS-422 interface is required on a PMAC-Lite to tie it to another 
PMAC.  In this case, the ACC-3D 26-pin serial cable should be used, not the 
ACC-3L 10-pin serial cable. 

Serial Card Addressing 
This software addressing is done by the @n command, where n is a hexadecimal digit from 0 to F (15 
decimal). Up to sixteen cards may be chained together under one host.  The command addresses all cards 
simultaneously, but it is not legal to send a querying command for response over the serial port when the 
system is in this mode (which card would respond?). 

Setting Up the Addresses 
The software address command issued by the host must match the card number of the particular PMAC as 
determined by jumpers E40-E43 on PMAC-PC, PMAC-Lite, PMAC1.5-STD, and PMAC-VME, or by 
switches SW1-1 to SW1-4 on PMAC-STD.  See Table 4-1 for the proper jumper configurations.  One 
card on the chain must be set up as card @0.  It is recommended that the other cards be numbered 
sequentially from zero (@1, @2, etc.). 

 

Card Address Control E Points for PMAC-PC, -Lite, 1.5-STD and -VME 
E40 E41 E42 E43 Card Address Default 
ON ON ON ON @0 @0 
OFF ON ON ON @1  
ON OFF ON ON @2  
OFF OFF ON ON @3  
ON ON OFF ON @4  
OFF ON OFF ON @5  
ON OFF OFF ON @6  
OFF OFF OFF ON @7  
ON ON ON OFF @8  
OFF ON ON OFF @9  
ON OFF ON OFF @A  
OFF OFF ON OFF @B  
ON ON OFF OFF @C  
OFF ON OFF OFF @D  
ON OFF OFF OFF @E  
OFF OFF OFF OFF @F  
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Switch Address Control For PMAC-STD 

SW1-1 SW1-2 SW1-3 SW1-4 Card Address Default 
OFF OFF OFF OFF @0 @0 
ON OFF OFF OFF @1  
OFF ON OFF OFF @2  
ON ON OFF OFF @3  
OFF OFF ON OFF @4  
ON OFF ON OFF @5  
OFF ON ON OFF @6  
ON ON ON OFF @7  
OFF OFF OFF ON @8  
ON OFF OFF ON @9  
OFF ON OFF ON @A  
ON ON OFF ON @B  
OFF OFF ON ON @C  
ON OFF ON ON @D  
OFF ON ON ON @E  
ON ON ON ON @F  

Multi-Card Mode Variable 
When talking to multiple cards over a single daisy-chained connector, variable I1 should be set to 2 or 3 
(usually 2) on every PMAC on the chain for proper communications (usually, I1 is set to 0, sometimes 1, 
if it is the only card on the connecting cable).  If this setting has not been made already, as would be the 
case on the initial connection, simply set I1 to 2 as the first command to the cards, then immediately 
address one of the cards.  For example, the command string I1=2@0<CR> could be used to set up all the 
cards for daisy chained communications, and then address card 0.   

Once this setting has been made (and stored with the SAVE command), it is not necessary to issue this 
command, but it will not hurt to do so.  Setting I1 to 3 rather than 2 disables the CTS handshaking, so the 
host cannot hold off characters from a PMAC; typically this is undesirable. 

Addressed-Card Actions 
The addressed card at any time can accept alphanumeric commands and respond to them.  Only it tries to 
control the communications and handshake lines back to the host computer.  The cards not addressed at a 
given time ignore alphanumeric characters sent over the serial port, and their communications and 
handshake outputs are tri-stated so as not to interfere with those of the addressed card.  The cards not 
addressed still can respond to certain control characters (not those querying a card, below), and, of course, 
are listening to see if the addressed card number changes. 

Simultaneous Addressing 
It is possible to address all cards simultaneously for alphanumeric commands with @@ software 
addressing.  In this case, all cards will accept alphanumeric characters.  Card @0 will provide the 
handshake response characters.  Query commands are not permitted in  addressing.  If the host sends such 
a command in this mode, card @0 will respond with the <BELL> character. 

Handling Data Response 
When sending commands that require a data response, it is important to ask for data from only one card 
per command line (a command line is terminated by the <CR> character), and to accept the response 
before querying another card.  Otherwise more than one card may try to control the lines at once when 
responding.  For example, the command string @1P@2P<CR> could lead to contention as both cards try 
to send position data (neither card starts to process the command until it sees the <CR> character). 
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Power-Up State 
With the cards set up for daisy chained communications (i.e., I1 = 2 or 3 saved in EAROM), card @0 
comes out of the power-up/reset cycle as the addressed card, ready to respond to commands; all other 
cards come out of the power-up/reset cycle not addressed, so they will ignore alphanumeric commands 
until they are addressed. 

Control-Character Commands 
Control-character commands that do not require a data response are always addressed to all cards on the 
chain.  The commands in this class are: 

<CTRL-A> Abort all programs and moves 
<CTRL-D> Disable all PLC programs 
<CTRL-I> Repeat last command line (tab) 
<CTRL-K> Kill all motors 
<CTRL-M> Feed hold all coordinate systems 
<CTRL-Q> Quit all motion programs 
<CTRL-R> Run all coordinate systems 
<CTRL-S> Step all coordinate systems 
<CTRL-W> Take command line from (bus port) dual-ported RAM 
<CTRL-X> Erase command and response queues 
<CTRL-Z> Make serial port the active response port 

<CTRL-M> 
<CTRL-M>: The carriage return character causes the command line just transmitted to every card in the 
chain to be accepted by that card and processed.  This allows separate command lines to be sent to each 
card, but processed simultaneously.  If a particular card in the chain has not been sent a command when it 
sees the carriage return command, it will process a "no-operation" command. 

Example: 

The command string @0&1B4R@1&3B25R<CR> will cause card @0’s coordinate system 1 to start 
executing motion program 4, and card @1’s coordinate system 3 to start executing motion program 25. 

Control-character commands that require a data response are accepted and processed by the currently 
addressed card, and ignored by the other cards.  They will be rejected in the  addressing mode.  
Commands in this category are: 

<CTRL-B> Report all motor status words 
<CTRL-C> Report all coordinate system status words 
<CTRL-E> Report data-gathering address contents in binary 
<CTRL-F> Report all following errors 
<CTRL-G>   Report global status words 
<CTRL-P> Report all motor positions 
<CTRL-V> Report all motor velocities 
<CTRL-Y> Report and repeat last command line 

A control-character command requiring a data response will be acted on by the card addressed by the 
most recently processed addressing command.  Since an addressing command is not processed until the 
next carriage return character, but a control-character command is acted on before a carriage return, it is 
important to send a carriage return character between the addressing and the control-character command. 

Other control character commands and their properties in multiple-card applications are: 
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<CTRL-H>  
<CTRL-H> (backspace to erase last character sent) actually acts on the entire data stream as it is sent to 
the cards.  It erases the last alphanumeric character sent in the stream.  Repeated <CTRL-H> characters 
can erase all the alphanumeric characters sent since the latest carriage return character.  If this includes 
addressing characters, these are erased as well. 

<CTRL-T> 
Full duplex communication (echoing of characters) is not permitted in daisy-chained serial mode.  
Therefore, the <CTRL-T> command (full/half-duplex toggle) will be rejected in this mode. 

Resetting PMAC 
There are several ways that PMAC can be reset.  The first way is by cycling the 5V power off, then on.  
The second way is by taking the INIT/ line on the JPAN connector low, then high.  The third way is to 
use the backplane-bus reset line.  This method depends on the setting of jumper E39, and in PC-bus 
versions, E93 and E94.  The fourth method is to send the command to PMAC over either port. 

PMAC Reset Actions 
When PMAC receives the reset signal or command from any of these sources, it immediately stops all 
active computations and starts its reset cycle.  At the beginning of the reset cycle, it disables all outputs 
and loads the firmware into active memory.  It then proceeds to load active memory in a manner 
dependent on the hardware configuration and the setting of re-initialization jumper E51.  The PMAC 
memory can be retained through a power-down or reset cycle with either EEPROM or battery-backed 
RAM (the standard CPU section, which comes with the default configuration, Options 4 and 5), or 
completely with flash memory (the Option CPU section, which comes with Options 4A, 5A, and 5B).  
With the standard CPU section, the basic user card setup information (I-variables, conversion table 
settings, VME and DPRAM address settings) are held in non-volatile EEPROM after being written there 
with the SAVE command.  User programs, tables, buffers, and definitions are simply retained in RAM by 
the battery.  No command or action is required to keep these items through a power-down or reset cycle. 

With the Option CPU section, all user card information is held in non-volatile flash memory after being 
written there with the SAVE command.  No information is held in RAM through a power-down or reset 
cycle, so the SAVE command must be used to keep any information in the card through a reset. 

If jumper E51 is in its default state (OFF for PMAC-PC, -Lite, -VME, and 1.5STD; ON for PMAC-STD), 
PMAC copies the contents that were last saved into its non-volatile memory into active memory.  For 
PMACs with the standard CPU section, this involves just the items stored in the little EEPROM.  Other 
items are kept just as they were before the reset.  For PMACs with the Option CPU section, this involves 
all user settings: variables, definitions, programs, buffers, and tables. 

All incremental encoder counters are set to zero during the reset cycle.  At the end of the reset cycle, all 
activated motors that have Ix80 set to 1 are enabled, with the commanded position set to the actual 
position.  Other motors are left in the killed state; these require a command to enable them at a future 
time. 

PMAC Re-initialization Actions: Standard CPU 
If Jumper E51 is in its non-default state on a PMAC with the standard CPU section (ON for PMAC-PC, -
Lite, and -VME; OFF for PMAC-STD), PMAC performs a re-initialization during the reset cycle.  
Instead of copying saved values of parameters from EEPROM into active memory, it copies the factory 
default values from the firmware PROM into active memory. 
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Typically, this re-initialization procedure is necessary only if the card has been locked up due to errant 
software or parameter settings, and communications are impossible to establish.  The most common 
instances of this type are PLC programs with accidentally repeating SEND or CMD statements (try 
sending a <CTRL-D> before re-initializing), or a fast servo time with too many motors activated. 

PMAC Re-initialization Actions: Flash CPU 
If the jumper E51 is ON when a PMAC with the Flash CPU executes its reset cycle, PMAC enters a 
special re-initialization mode that permits the downloading of new firmware.  In this mode, the PMAC 
can communicate only over the PC/STD bus port, or over the serial port at a baud rate of 38,400, 
regardless of the setting of the baud rate jumpers.  Only a very basic bootstrap firmware is executing in 
this mode.   

In this bootstrap mode, there are very few command options. PMAC will respond to any of the status-bit 
query commands (?, ??, or ???) with the response BOOTSTRAP PROM.  This permits the host to know 
whether PMAC is in this mode or not.  PMAC will respond to the VERSION query command with the 
number of the bootstrap firmware (e.g. 1.01) which will probably be different than the operational 
firmware version. 

Normal Re-initialization 
To bypass the download operation in this mode, send a <CONTROL-R> character to PMAC.  This puts 
PMAC in the normal operational mode with the existing firmware.  Factory default values for I-variables, 
conversion table settings, and bus addresses for DPRAM and VME are copied from the firmware section 
of flash memory into active memory.  The saved values of these values are not used, but they are still kept 
in the user section of flash memory. 

For any change in the operational firmware, the compiled PLCs will have to be re-compiled with the 
LIST LINK file for the new firmware version.  It is important to delete all compiled PLCs (DELETE 
PLCC n) before attempting to change the operational firmware version.  Compiled PLC programs 
running under a firmware version other than that which they were compiled for can have unpredictable 
consequences. 

To download new operational firmware to the PMAC, send a <CONTROL-O> character to PMAC over 
the serial port.  The bootstrap firmware interprets this as a signal to prepare for downloading of new 
operational firmware.  All subsequent bytes received over the serial port will be considered as binary-
coded bytes of machine-code firmware, and will be written into the flash memory. 

Note 

Before attempting to upgrade PMAC operational firmware, make sure all of 
PMAC configuration has been stored to disk.  If the new firmware provides a 
different user memory map, PMAC will clear memory on power-up after new 
firmware has been loaded.  Even if this is not the case, the easiest way to establish 
a new firmware checksum reference value is to send the $$$*** command, 
which clears the buffers. 

The host computer should wait at least five seconds after the <CONTROL-O> command before starting to 
download the operational firmware.  This delay ensures that the flash memory is ready to be written to.  
After downloading, the PMAC should be powered down. No other communications should be attempted 
with PMAC at this time. 

After turning off power to PMAC, the E51 jumper should be removed.  When power is re-applied to 
PMAC, it should operate normally with the new firmware.  The user settings stored in other segments of 
the flash memory with the SAVE command are not affected by the downloading of new firmware (unless 
the new firmware has a different user memory map). 
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The PMAC Executive program V3.x and newer, when it establishes communications with a PMAC in 
this re-initialization mode, will notice automatically that PMAC is in this mode.  In this mode, the menu 
selection Download binary firmware file.. in the File menu can be selected to take a binary file from disk 
and copy over the serial port to PMAC.  The program then forces an exit to the operating system.  At this 
point, turn off power to PMAC and remove the E51 jumper. 

With older versions of the PMAC Executive program, or with a terminal emulator program running on a 
PC, the procedure for downloading new firmware is as follows (remember to back up the PMAC software 
and delete any compiled PLC programs first): 

• Establish communications to PMAC over the serial port at 38400 baud.  Confirm that PMAC is in 
this re-initialization mode by seeing that it responds to the ? command with BOOTSTRAP PROM.  If 
using the Executive program, make sure that all windows other than the Terminal window (such as 
the position window) are closed, so no other commands are being sent to PMAC. 

• Type a <CONTROL-O> character in the terminal window and immediately exit to DOS.  Do not send 
any other characters to PMAC here. 

• Use the binary version (/B) of the DOS COPY command to download the file containing the new 
firmware to PMAC.  The command typed at the DOS prompt will look something like: 

COPY/B B:V115A.BIN COM1: 

• Where B:V115A.BIN is the directory and name of the file containing the operational firmware in 
binary machine code format, and COM1: is the serial port being used for communications. 

• Shut off power to PMAC and remove the E51 jumper. 
• Restore power to PMAC and resume normal operation with the new firmware. 
• To update the firmware checksum reference value so PMAC does not report a firmware checksum 

error, the easiest method is to send the $$$*** command, which causes PMAC to compute the new 
reference value automatically (but it also clears all of your programs and buffers from active 
memory).  As an alternative method, send the command RHX:$0794 several times.  If the same 
value is received each time, PMAC has stopped its checksum calculations on an error, and the 
reported value is the value it calculated for the firmware checksum.  Write this value into reference 
register X:$07B1.  For example, if RHX:$0794 returns 9A3B12 several times, send the command 
WX:$07B1,$9A3B12 to PMAC.  Remember that for either method, store this reference value to 
flash memory with the SAVE command. 

• To re-compile PLC programs, either use the LISTLINK.TXT file that corresponds to the new 
firmware version, or create this file by sending the LIST LINK command to the PMAC with the 
new firmware and storing the response in a text file of this name. 

Re-initialize Command 
The $$$*** command causes a reset and full re-initialization of PMAC.  In addition to loading default 
parameter values, it also clears out all of the buffers in battery-backed RAM: motion program, PLC 
program, tables, etc. 

Some users will always have the card set up to re-initialize during the reset cycle; they then download all 
parameter settings and programs immediately after each cycle.  The logic behind this strategy is that the 
same startup sequence of operations is used even if a new replacement board has just been put in.  It is 
also useful for those applications that do not wish to rely in any way on the PMAC own non-volatile 
storage (EEPROM and battery-backed RAM or flash). 
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For a complete re-initialization of PMAC to known state, the following commands can be added: 
P0..1023=0 

Q0..1023=0 

M0..1023->* 
UNDEFINE ALL 

Remember that these commands directly affect only active memory (RAM).  To copy new settings into 
non-volatile memory (EEPROM or Flash), use the SAVE command. 
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TROUBLESHOOTING 
PMAC Card Troubleshooting 
General 
Is the green LED (power indicator) on PMAC CPU board ON, as it should be?  If it is not, find out why 
PMAC is not getting a +5V voltage supply. 

Is the red LED (watchdog timer indicator) on PMAC CPU board OFF, as it should be?  If it is ON, make 
sure PMAC is getting close to 5V supply (at less than 4.75V), the watchdog timer will trip, shutting down 
the card.  The voltage can be probed at pins 1 and 3 of the J8 connector (A1 and A2 on the PMAC-VME).  
If the voltage is satisfactory, inspect PMAC to see that all inter-board connections and all socketed ICs 
are well seated.  If the card will not run with the red LED off, contact the factory.  

Bus Communications 
Do the bus address jumpers (E91-E92, E66-E71) set an address that matches the bus address that the 
Executive program is trying to communicate with?  

Is there something else on the bus at the same address? Try changing the bus address to see if 
communications can be established at a new address.  Address 768  (300 hex) is usually open. 

Serial Communications 
Is the proper port being used on the PC?  If the Executive program is addressing the COM1 port, make 
sure that it is cabled out of the COM1 connector. 

Does the baud rate specified in the Executive program match the baud rate setting of the E44-E47 
jumpers on PMAC? 

With a breakout box or oscilloscope, make sure there is action on the transmit lines from the PC as you 
type into the Executive program.  If there is not, there is a problem on the PC end. 

Probe the return communication line while giving PMAC a command that requires a response (e.g. 
<CONTROL-F>). If there is no action, change jumpers E9-E16 on PMAC to exchange the send and 
receive lines. If there is action, but the host program does not receive characters, RS-232 may be 
receiving circuitry that does not respond at all to PMAC RS-422 levels.  If using another model of PC, try 
using it as a test (most models accept RS-422 levels quite well).  If the computer will not accept the 
signals, a level-conversion device, such as Delta Tau's Accessory-26, may be needed. 

Commutation Troubleshooting 
If there was no movement, check to make sure that output voltages were received on DAC1 and DAC2.  
A value of 2000 should put 0.6V on the DAC lines.  If voltage outputs were received from PMAC, but no 
movement, check the amplifier and motor setups.  If voltage outputs were not received, check the analog 
supply to PMAC; make sure that the limits are held low or disabled; and make sure that the amplifier fault 
signal is not indicating to PMAC that it has faulted. 

Servo Loop and Jogging Troubleshooting 
If holding position well, but cannot move the motor, make sure that the hardware limits are held low.  
Check which limits I125 is addressed to (usually +/-LIM1), then make sure those points are held low (to 
AGND), and sourcing current (unscrew the wire from the terminal block and put the ammeter in series 
with this circuit to confirm this).  If this is not right, refer to the Connecting PMAC to the System section 
previously, and the PMAC Opto-Isolation drawing to re-check the connections. 
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If the motor dies after it is given a jog command, the fatal following error limit has been exceeded.  If this 
has happened, it is either because a move that is more than the system can physically do has been 
requested (if so, reduce I122), or because it is badly tuned (if this is the case, increase proportional gain 
I130).  To restore closed-loop control, issue the J command. 

Homing Search Troubleshooting 
No Movement At All 
Check the following: 

• Are both limits held low to AGND and sourcing current out of the pins? 
• Is there a  proper supply to A+15V, A-15V, and AGND? 
• Is the proportional gain (Ix30) greater than zero? 
• Can any output be measured at the DAC pin when an O command has been given? 
• Is the following error limit being tripped? Disable the fatal following error limit (Ix11) by setting it to 

zero, and try to move again. 

Movement, But Sluggish.  
Check the following: 

• Is proportional gain (Ix30) too low? Try increasing it (as long as stability is kept). 
• Is the big step limit (Ix67) too low?  Try increasing it to 8,000,000 (near the maximum) to eliminate 

any effect. 
• Is the output limit (Ix69) too low? Try increasing it to 32,767 (the maximum) to make sure PMAC 

can output adequate voltage. 
• Can an integrator help?  Try increasing integral gain (Ix33) to 10,000 or more, and the integration 

limit (Ix63) to 8,000,000. 

Runaway Condition 
 Check the following: 

• Is there feedback?  Check that position changes can be read in both directions. 
• Does the feedback polarity match output polarity? Recheck the polarity match as explained above. 

Brief Movement, Then Stop 
Check the following: 

• Is this following error limit being tripped?  Disable fatal following error limit (Ix11) by setting it to 
zero, then try to move again. 
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Motion Program Troubleshooting 
If the program does not run at all, there are several possibilities: 

• Can the program be listed?  In terminal mode, type LIST PROG 1 (or whichever program), and see 
if it is there.  If not, try to download it to the card again. 

• Is the program buffer closed?  Type A just in case the program is running; type CLOSE to close any 
open buffer; type B1 (or the program #) to point to the top of the program; and type R to try to run it 
again. 

• Can each motor in the coordinate system be jogged in both directions?  If not, review that motor's 
setup. 

• Have any motors been assigned to the coordinate system that are not really set up yet?  Every motor 
in the coordinate system must have its limits held low, even if there is no real motor attached. 
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INPUT/OUTPUT: CONNECTING PMAC TO THE MACHINE 
Capabilities and Features 
PMAC has extensive input and output capabilities, analog and digital, special-purpose and general-
purpose.  The I/O has many features to ensure the integrity of the signals; as the different types of I/O are 
introduced, the steps taken to improve the integrity of each type of I/O is explained. 

Quadrature Encoder Inputs (JMACH Port) 
PMAC is equipped to take digital quadrature encoder signals at 0 to 5V levels as a standard feature.  For 
each DSPGATE IC in a PMAC configuration, four encoders can be attached.   

Single-Ended vs. Differential 
PMAC has differential line receivers for each encoder channel, but can accept either single-ended (one 
signal line per channel) or differential (two signal lines, main and complementary, per channel).  A 
jumper for each encoder (E18-E21 and E24-E27) permits customized configurations, as described below. 

The differential line receivers can accept up to +/-12V between main and complementary inputs, and +/-
12V between either input the GND reference voltage.  Typically 0 and +5V levels are used. 

Single-Ended Encoders 
With the jumper for an encoder set for single-ended, the differential input lines for that encoder are tied to 
2.5V; the single signal line for each channel is then compared to this reference as it changes between 0 
and 5V.   
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Figure 1 PMAC Motion Controller Custom Gate Array IC 
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Connect pin 1 to 2 to tie differential line to 
+2.5V
Connect pin 2 to 3 to tie differential line to 
+5V
(Reversible socketed SIP on PMAC2)
Tie to +2.5V when no connection
Tie to +2.5V for single-ended encoders
Don't care for differential line driver 
encoders
Tie to +5V for complementary open-
collector encoders (obsolete)
Tie to +5V to support external XOR loss of 
encoder circuitry

 
Figure 2 PMAC Encoder Input Circuitry 

When using single-ended TTL-level digital encoders, the differential line input should be left open, not 
grounded or tied high; this is required for the PMAC differential line receivers to work properly.   

Differential Encoders 
Differential encoder signals can enhance noise immunity by providing common-mode noise rejection.  
Modern design standards virtually mandate their use for industrial systems, especially in the presence of 
PWM power amplifiers, which generate a great deal of electromagnetic interference. 

Open-Collector Differential 
There are two types of differential encoder signals.  The first has simple open-collector drivers (or 
equivalent) on both the main and complementary channels.  For this type of encoder, the jumper must be 
set up for differential mode to provide pull-up resistors on both inputs. 

Differential Line Drivers 
The second type of differential encoder format (and the one that is strongly recommended) is the 
differential line driver on both signals.  For this type of encoder, it does not matter what the jumper 
setting is; most will leave the jumper in the default setting. 

Termination Resistors 
When driving the encoder signals over a long cable (10 meters or more), to reduce the ringing on 
transitions, add termination resistors between the main and complementary lines.  PMAC provides 
sockets for resistor packs for this purpose.  The optimum value of the termination resistor is system 
dependent, but 330 ohms is a good starting point. 

Analog Encoders  
PMAC can take analog voltage-source encoder inputs into its differential line receivers if the drivers have 
enough capability to work against a 470 ohm pull-up resistor and the maximum differential voltage the 
line receiver sees is between 2 and 12V.  For a single-ended analog signal, the complementary channel 
should  be tied to GND to provide proper transitions as the voltage signal goes positive and negative.  It is 
better, but not required, to jumper the input for single-ended.   

For a differential analog encoder, the two signals for each channel are wired in just as for a digital 
differential encoder.  It is better, but not required, to jumper the input for differential.  In this case, the 
12V input limit is a peak-to-peak measurement. 
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Power Supply and Isolation 
In the basic configuration of PMAC, the encoder circuitry is not isolated from the PMAC digital circuitry 
and the signals are referenced to the PMAC digital common level GND.  Typically, the encoders in this 
case are powered from the PMAC +5V lines with a return on GND.  The total encoder current draw must 
be considered in sizing the PMAC power supply. 

It is also possible to use a separate supply for the encoders with non-isolated signals connected to PMAC.  
In this case, the return of the supply should be connected to the digital common GND on PMAC to give 
the signals a common reference.  The +5V lines of separate supplies should never be tied together, as they 
will fight each other to control the exact voltage level. 

Isolated Encoder Signals 
In many systems, the encoder circuitry is optically isolated from the PMAC digital circuitry.  This is 
common in systems with long distances from the encoder to the controller (> 10m or 30 ft) and/or 
systems with very high levels of electrical noise.  Isolation can be achieved using the ACC-8D Opt 6 4-
channel encoder isolator board.  With an isolated encoder, a separate power supply is required for the 
encoders to maintain isolation, and the return on the supply must not be connected to the digital common 
GND, or the isolation will be defeated. 

Simulated Encoder Signals 
Special consideration must be given to systems that have a simulated encoder signal provided from a 
resolver-to-digital converter in a brushless motor amplifier.  In these systems, the encoder signals are 
almost always referenced to the amplifier's signal return, which in turn is connected to the PMAC analog 
common AGND.  The best setup in these cases is to isolate the simulated encoder signal from the PMAC 
digital circuitry with the ACC-8D Opt 6 isolator board or similar module.  This will keep full isolation 
between the PMAC digital circuitry and the amplifier. 

If isolation of the simulated encoder signals is not feasible, the PMAC digital circuitry and the amplifier 
signal circuitry (including the PMAC analog circuitry) must be well tied together to provide a common 
reference voltage.  Do this by putting jumpers on PMAC E-Points E85, E87, and E88, tying the digital 
and analog circuits on PMAC together, and therefore the analog signal circuits.  Avoid having the 
simulated encoder cable(s) providing the only connection between the circuits.  This can result in lost 
signals from bad referencing, or even component damage from ground loops. 

Wiring Techniques 
There are several important techniques in the wiring of the encoders that are important for noise 
mitigation.  First, the encoder cable should be kept physically separate from the motor power cable if at 
all possible.  Second, both of these cables should be shielded, the motor cable to prevent noise from 
getting out, and the encoder cable to prevent noise from getting in.  These shields should be grounded at 
the inward end only, that is, to the device that is itself tied to a ground. 

Twisted Pairs 
A third important noise mitigation technique is to twist the leads of the complementary pairs around each 
other.  With these twisted pairs, what noise does get in tends to cancel itself out in opposite halves of the 
twist. 

Encoder Signal Sampling 
After the front-end processing through the differential line receivers, the encoder signals are sampled 
digitally at a rate determined by the SCLK (encoder sampling clock) frequency.  SCLK is divided down 
from the master clock frequency by an amount determined by jumpers E34 to E38.  The default setting is 
E34 ON, which gives SLCK half the frequency of the master clock, which on the standard board is about 
10 MHz.   
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E35 ON gives it one-fourth the frequency; E36 one-eighth; and E37 one-sixteenth.  Setting E38 ON 
provides an external SCLK signal (on CHC4 and CHC4/ inputs).  The SCLK frequency used sets the 
upper limit on the possible count rate; in actual use, the maximum count rate should be considered about 
20% lower, allowing for imperfections in the input signals. 

Digital Delay Filter 
Each encoder has a digital delay filter consisting of three cascaded D-flip-flops on each line, with a best 
two-of-three voting scheme on the outputs of the flip-flops.  The flip-flops are clocked by the SCLK 
signal.  This filter does not pass through a state change that only lasts for one SCLK cycle; any change 
this narrow should be a noise spike.  In doing this, the filter delays actual transitions by two SCLK.   

CHA D Q D Q D Q D Q

D Q D Q D Q D Q

2 of 3
Voting

2 of 3
Voting

C B

 
Figure 3 Encoder Digital Delay Filter 

Frequency Tradeoffs 
The lower the SCLK frequency, the wider the noise spike that can be rejected, but the lower the 
maximum count frequency.  These aspects must be balanced in the system.  In general, SCLK should be 
set to the lowest frequency that permits PMAC to keep up the maximum possible count frequency from 
the encoder. 

Bypassing the Filter 
This delay filter may be bypassed by setting the Encoder I-Variable 1 (I901, I906, etc.) to 1.  Bypassing 
this filter will probably be done only by those with parallel sub-count interpolation for which the delay 
could cause transition errors. Refer to the Feedback Features section of this manual. 

Error Detection 
Count-Error Flag 
If an illegal encoder transition (both channels changing on the same SCLK cycle) does get through (or 
around, if bypassed) the delay filter, and to the decoder, a count-error flag is set, noting a loss of position 
information.  This flag is bit 18 of the encoder status/control word (X:$C000 for Encoder 1, X:$C004 for 
Encoder 2, etc.).  Suggested M-variable definitions M118, M218, etc., can be used to access these bits. 

Once-per-Rev Check 
In addition, it is possible to use the third channel of the encoder to do a once-around position check using 
the PMAC position-capture feature to detect any loss of count.  Refer to the Position-Capture description 
in the Synchronizing PMAC to External Events section of this manual, and program example 
PLCMOD.PMC for more details. 

Optically Isolated Dedicated Digital Input Flags (JMACH Port) 
Each channel of PMAC has four dedicated digital inputs on the machine connector: +LIMn, -LIMn 
(overtravel limits), HMFLn (home flag), and FAULTn (amplifier fault).  These inputs are typically 
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assigned to a motor as a set for dedicated use as flags by addressing them with the motor I-variable Ix25.  
Those flags not used for the dedicated purposes may be used as general-purpose inputs with the 
assignment of an M-variable. 

Flag Wiring 
All of these flag inputs must be shorted to the zero-volt reference voltage for the circuit (usually AGND), 
allowing current to flow through the LEDs in the opto-isolator, in order to be considered in a zero state.  
The current flow to 0V just needs to be broken to put the flag in its 1 state; no external pull-up is required, 
although it will not hurt.  For an electronic switch, an open-collector output is usually used.  For a 
mechanical switch, an open/closed contact between the flag pin and 0V is usually used. 

Overtravel Limit Inputs 
When assigned for the dedicated uses, these signals provide important safety and accuracy functions.  
+LIMn and -LIMn are direction-sensitive overtravel limits that must be actively held low (sourcing 
current from the pins to ground) to permit motion in their direction. 

The direction sense of +LIMn and -LIMn is the opposite of what many people would consider intuitive.  
That is, +LIMn should be placed at the negative end of travel, and -LIMn should be placed at the positive 
end of travel. 

Home Flag Input 
Typically, the HMFLn input is used for homing or other registration functions through use of the PMAC 
hardware position-capture feature.  Encoder/flag I-variables 2 and 3 determine which signals and which 
edges cause a capture. 

Amplifier Fault Input 
Typically, the FAULTn input is used as a signal from the amplifier that something is wrong.  Ix25 
controls whether a high signal or a low signal means fault. 

For more details on the actions taken on these flags, refer to the Making Your Application Safe and 
Synchronizing PMAC to External Events sections of this manual. 

Flag Isolation 
These inputs can be kept isolated from other circuits.  If supplied from the analog supply voltage 
(A+15V) and tied to analog ground (AGND), they will be isolated from the PMAC digital circuitry.  If 
supplied from a digital supply voltage (+12V) and tied to digital ground (GND), they will be isolated 
from the PMAC analog circuitry.  If supplied from a separate supply (OPTO+V; 12 to 24V) and tied back 
to the supply’s own ground, they will be isolated from both the digital and analog circuitry.  The setting 
of jumpers E89 and E90 controls which power the flag circuitry, and therefore, which circuit(s) it is 
isolated from. 

Dedicated Digital Output Flags (JMACH, JEQU Ports)  
PMAC has two dedicated digital outputs for each channel in the hardware configuration: the Amplifier-
Enable/Direction line (AENA/DIRn) and the Compare-Equals line (EQUn). 

Amplifier-Enable/Direction Output 
The AENA/DIRn output is an optically-isolated output tied to the same circuit as the dedicated digital 
inputs.  It can be kept isolated from the PMAC digital computation circuitry, from the PMAC analog 
circuitry, or both.   

Amplifier Enable/Disable Use 
These outputs are typically used as enable/disable lines for the amplifiers commanded by PMAC.  This 
control function is very important for safety reasons to make sure the amplifier can be completely shut 
down when needed.  (It is not a good idea to rely on a zero analog output voltage; offsets can easily build 
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up so that a zero command does not cause a stop.  Analog output offset will manifest itself as creep in a 
velocity-mode drive; on a lightly-loaded torque-mode drive, it can show up as high-speed runaway.) 

Transition 
When PMAC sees a fault signal from the amplifier, it will kill the motor automatically, taking the 
amplifier-enable signal to the disabled state.  Many amplifiers, when they are disabled for any reason, will 
indicate a fault signal to the controller.  PMAC permits an amplifier (changing the amplifier enable line 
from disabled to enabled) to be enabled even when the amplifier shows a fault.  However, in the PMAC 
next error scan, which occurs in the background housekeeping task every few milliseconds, if the 
amplifier still shows a fault, PMAC will disable that axis again. Refer to the Synchronizing PMAC to 
External Events section of this manual. 

Sinking Drivers 
The default drivers for these outputs are open-collector (sinking) circuits, requiring external pull-up 
resistors.  Typically, they can be connected directly to the cathode (negative end) of an opto-isolator input 
on an amplifier.  The ULN2803A ICs used are rated to 100 mA and 24V; internal diode protection 
circuits in the IC limit the high voltage of the output to the analog positive supply voltage, usually +15V.  
To defeat this protection and allow the outputs to be pulled above 15V, pin 10 of the driver IC must be 
removed from the socket. 

Sourcing Drivers 
On newer hardware versions of PMAC, those with jumpers E101 and E102, a UDN2981A open-emitter 
(sourcing) driver can be substituted for the standard sinking driver.  This is done by exchanging the IC in 
the socket and changing the placement of jumpers E101 and E102. 

Polarity Control 
Jumper E17 controls the polarity of these outputs.  For PMAC-PC, a jumper ON means low true enable 
(default); a jumper OFF means high true enable.  PMAC-PC has a single jumper E17 for all four or eight 
lines; PMAC-Lite, -VME, and -STD have separate jumpers E17A to E17H for each channel.  For PMAC-
Lite, -VME, and –STD, a jumper OFF means low true enable (default for PMAC-Lite and -VME); a 
jumper ON means high-true enable (default for PMAC-STD).  The reason that the polarity is under 
hardware, not software control is that it is important to make sure the amplifiers are properly disabled 
even if the software fails. 

Failsafe Polarity 
With the default sinking drivers for the amplifier enable signals, using the low-true enable polarity (low 
voltage — conducting — is enable; high voltage — non-conducting — is disabled) provides better 
failsafe protection against loss of power supply.  If either the +5V supply for the PMAC computational 
section, or the +15V analog supply is lost, the amplifier will be disabled automatically, because the output 
transistor will go into its non-conducting state.  To use this failsafe protection without connecting a signal 
of this polarity directly to the amplifier, use intermediate circuitry to change the signal format.  With the 
alternate sourcing drivers, the high-true enable polarity provides better failsafe protection. 

Direction Bit Use 
An alternate use for these outputs is as the direction (sign) bits for drive systems expecting sign-and-
magnitude commands.  Some servo amplifiers expect this command format, and if the signal needs to be 
run through a voltage-to-frequency converter such as the ACC-8D Opt 2 to create a pulse train for a 
stepper drive, this format should be used.  To use the output in this manner, bit 16 of Ix25 for the motor 
using this line must be set to 1.  This disables its use as an amplifier-enable line.  Also bit 16 of Ix02 for 
the motor must be set to 1.  This makes the analog output an absolute value, and places the sign bit on this 
output. 
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General-Purpose Use 
If no dedicated use is made of this output, it may be used as a general-purpose output by assigning an M-
variable to the bit (M114, M214, etc., in the suggested M-variable definitions). 

Compare-Equals Outputs 
The compare-equals (EQU) outputs have a dedicated use of providing a signal edge when an encoder 
position reaches a pre-loaded value.  This is very useful for scanning and measurement applications.  
Instructions for use of these outputs are covered in detail in the Synchronizing PMAC to External Events 
section of this manual. 

PMAC-PC 
On the PMAC-PC, there is not a framed connector for the EQU outputs.  However, these signals may be 
brought out by placing a 26-pin IDC connector over the 13 E-point pairs E53 to E65, which include the 
eight EQU lines.  These outputs are TTL-level with very low drive capability; they must be buffered 
externally before they can drive any real devices.  ACC-27, normally used as an I/O buffer for the 
thumbwheel multiplexer port, can be used to drive several of these EQU lines.  The 26-pin cable provided 
with the ACC-27 fits over the 13 jumper pairs E53-E65. 

PMAC-VME 
On PMAC-VME, these signals are brought out on connector J7 (JEQU), referenced to digital ground 
(GND).  As shipped from the factory, they are open-collector (sinking) outputs, with a ULN2803A driver 
IC, rated to 24V and 100mA each.  They may be changed to open-emitter (sourcing) drivers by replacing 
this chip in U28 with a UDN2981A driver IC and changing jumpers E93 and E94. 

PMAC-Lite 
On PMAC-Lite, these signals are brought out on connector J8 (JEQU), optically isolated from the digital 
circuitry, referenced either to analog ground (AGND) or an external flag supply ground.  As shipped from 
the factory, they are open-collector (sinking) outputs, with a ULN2803A driver IC, rated to 24V and 
100mA each.  They may be changed to open-emitter (sourcing) drivers by replacing this chip in U54 with 
a UDN2981A driver IC and changing jumpers E101 and E102. 

PMAC-STD 
On PMAC-STD, these signals are brought out on connector J6 (JEQU) on each of the piggyback boards.  
They are open-collector (sinking) outputs with internal 1 kΩ pull-up resistors, rated to 5V. 

On PMAC-STD1.5, these signals are brought out on connector J8 (JEQU), optically isolated from the 
digital circuitry, referenced either to analog ground (AGND) or an external flag supply ground.  As 
shipped from the factory, they are open-collector (sinking) outputs, with a ULN2803A driver IC, rated to 
24V and 100mA each.  They may be changed to open-emitter (sourcing) drivers by replacing this chip in 
U54 with a UDN2981A driver IC and changing jumpers E101 and E102. 

Optically Isolated Analog Outputs (JMACH Port)  
PMAC provides high-precision analog outputs on the JMACH machine connectors that are generally used 
to command servo amplifiers as a velocity command, a torque command, or phase current commands (in 
pairs).  Each channel of PMAC provides complementary DAC and DAC/ outputs, operating from 16-bit 
digital-to-analog converters.  Each output has a range of -10V to +10V, providing a resolution of 
300µV/bit. 

Connections 
If the amplifier has a single-ended input, DACn should be used as the command line, and AGND as the 
return.  If the amplifier has a differential input, DACn should be used as the command line and DACn/ as 
the return.  The common of the amplifier input should still be tied to the PMAC AGND in this case. 
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Isolation 
The analog command output circuitry is optically isolated from the digital logic circuitry on PMAC.  
Usually the analog circuitry will get its power from the amplifier (most amplifiers provide +/- 15V for 
this purpose).  It is possible to jumper the power supply for the analog circuitry from the digital side of 
the board by using Jumpers E85, E87, E88, and E90, but this defeats the optical isolation; it is not 
recommended for any high-power or high-noise environment, especially when PMAC is electrically 
connected to a host computer, either by backplane bus or by non-isolated serial cable. 

Drive Capability 
The analog outputs are intended to drive high-impedance inputs with no significant current draw.  The 
220Ω output resistors will keep the current draw lower than 50mA in all cases and prevent damage to the 
output circuitry, but any current draw above 10mA can result in noticeable signal distortion. 

General-Purpose Use 
Any analog output not used for dedicated servo purposes may be utilized as a general-purpose analog 
output.  Usually this is done by defining an M-variable to the digital-to-analog-converter register 
(suggested M-variable definitions M102, M202, etc.), then writing values to the M-variable. 

General-Purpose Digital Inputs and Outputs (JOPTO Port)  
The PMAC JOPTO connector (J5 on PMAC-PC, -Lite, and -VME) provides eight general-purpose digital 
inputs and eight general-purpose digital outputs.  Each input and each output has its own corresponding 
ground pin in the opposite row.  The 34-pin connector was designed for easy interface to OPTO-22 or 
equivalent optically isolated I/O modules.  Delta Tau's Accessory 21F is a six-foot cable for this purpose. 

The PMAC-STD has a different form of this connector from the other versions of PMAC.  Its JOPT 
connector (J4 on the base board) has 24 I/O, individually selectable in software as inputs or outputs.  The 
rest of this discussion does not pertain to the PMAC-STD port, unless specifically mentioned.  Refer to 
the PMAC-STD Hardware Reference Manual for details on its JOPT port. 

Software Access 
These inputs and outputs are typically accessed in software through the use of M-variables.  In the 
suggested set of M-variable definitions, variables M1 through M8 are used to access outputs 1 through 8, 
respectively, and M11 through M18 to access inputs 1 through 8, respectively.  This port maps into the 
PMAC memory space at Y address $FFC2. 

Standard Sinking Outputs 
Caution 

Having Jumpers E1 and E2 set wrong can damage the IC. 

PMAC is shipped standard with a ULN2803A sinking (open-collector) output IC for the eight outputs.  
These outputs can sink up to 100mA, but must have a pull-up resistor to go high.   

Caution 

Do not connect these outputs directly to the supply voltage, or damage to the 
PMAC will result from excessive current draw. 

Provide a high-side voltage (+5 to +24V) into Pin 33 of the JOPTO connector and allow this to pull up 
the outputs by connecting pins 1 and 2 of Jumper E1.  Jumper E2 must also connect pins 1 and 2 for a 
ULN2803A sinking output. 
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Option for Sourcing Outputs 
Caution 

Having Jumpers E1 and E2 set wrong can damage the IC. 

It is possible for these outputs to be sourcing drivers by substituting a UDN2981A IC for the ULN2803A.  
This IC (U3 on the PMAC-PC, U26 on the PMAC-Lite, U33 on the PMAC-VME) is socketed, and so 
may be replaced easily.  For this driver, use pull-down resistors.  With a UDN2981A driver IC, Jumper 
E1 must connect pins 2 and 3, and Jumper E2 must connect pins 2 and 3. 

Input Source/Sink Control 
Jumper E7 controls the configuration of the eight inputs.  If it connects pins 1 and 2 (the default setting), 
the inputs are biased to +5V for the OFF state, and they must be pulled low for the ON state.  If E7 
connects pins 2 and 3, the inputs are biased to ground for the OFF state, and must be pulled high for the 
ON state.  In either case, a high voltage is interpreted as a 0 by the PMAC software, and a low voltage is 
interpreted as a 1. 

Thumbwheel Multiplexer Port I/O (JTHW Port) 
Multiplexed Uses 
The Thumbwheel Multiplexer Port, or Multiplexer Port, on the JTHW (J3) connector has eight input lines 
and eight output lines.  The output lines can be used to multiplex large numbers of inputs and outputs on 
the port, and Delta Tau provides accessory boards and software structures (special M-variable definitions) 
to capitalize on this feature.  Up to 32 of the multiplexed I/O boards may be daisy-chained on the port, in 
any combination. 

Port Accessories 
The ACC-18 Thumbwheel Multiplexer board provides up to 16 BCD thumbwheel digits or 64 discrete 
TTL inputs per board.  The TWD and TWB forms of M-variables are used for this board. 

The ACC-34, -34A, and -34B Serial I/O Multiplexer boards provides 64 I/O point per board, optically 
isolated from PMAC.  The TWS form of M-variables is used for these boards. 

The ACC-8D Option 7 Resolver-to-Digital Converter board provides up to four resolver channels whose 
absolute positions can be read through the thumbwheel port.  The TWR form of M-variables is used for 
this board. 

The ACC-8D Option 9 Yaskawa™ Absolute Encoder Interface board can connect to up to four of these 
encoders.  The absolute position is read serially through the multiplexer port on power up.   

Non-Multiplexed Uses 
If none of these accessory boards is used, the inputs and outputs on this port may be used as discrete, non-
multiplexed I/O.  They map into the PMAC processor space at Y address $FFC1.  The suggested M-
variable definitions for this use are M40 to M47 for the eight outputs, and M50 to M57 for the eight 
inputs.  The ACC-27 Optically Isolated I/O board buffers the I/O in this non-multiplexed form, with each 
point rated to 24V and 100mA. 

Control-Panel Port I/O (JPAN Port) 
The JPAN connector (J2 on PMAC-PC, -Lite, -VME, and top board of PMAC-STD) is a 26-pin 
connector with dedicated control inputs, dedicated indicator outputs, a quadrature encoder input, and an 
analog input.  The control inputs are low true with internal pull-up resistors.  They have predefined 
functions unless the control-panel-disable I-variable (I2) has been set to 1.  If this is the case, they may be 
used as general-purpose inputs by assigning M-variables to their corresponding memory-map locations 
(bits of Y address $FFC0). 
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Discrete Inputs 
Command Inputs 
JOG-/, JOG+/, PREJ/ (return to pre-jog position), and HOME/ affect the motor selected by the FDPn/ 
lines (see below).  STRT/ (run), STEP/, STOP/ (abort), and HOLD/ (feed hold) affect the coordinate 
system selected by the FDPn/ lines.   

Selector Inputs 
Caution 

Do not change the selector inputs while holding one of the jog inputs low.  
Releasing the jog input then will not stop the previously selected motor.  This can 
lead to a dangerous situation. 

The four low-true BCD-coded input lines FDP0/ (LSBit), FDP1/, FDP2/, and FDP3/ (MSBit) form a low-
true BCD-coded nibble that selects the active motor and coordinate system (simultaneously).  These are 
usually controlled from a single 4-bit motor/coordinate-system selector switch. The motor selected with 
these input lines will respond to the motor-specific inputs.  It will also have its position following 
function turned on (Ix06 is set automatically to 1.); the motor just de-selected has its position following 
function turned off (Ix06 is set automatically to 0.). 

Alternate Use 
The discrete inputs can be used for parallel-data servo feedback or master position if I2 has been set to 1.  
The ACC-39 Handwheel Encoder Interface board provides 8-bit parallel counter data from a quadrature 
encoder to these inputs.  Refer to the ACC-39 manual and the Parallel Position Feedback Conversion 
sections under Setting Up A Motor in this manual for more details on processing this data. 

Reset Input 
Input INIT/ (reset) affects the entire card.  It has the same effect as cycling power or a host $$$ 
command.  It is hard-wired, so it retains its function even if I2 is set to 1. 

Handwheel Inputs 
The handwheel inputs HWCA and HWCB can be connected to the second encoder counter on PMAC 
with jumpers E22 and E23.  If these jumpers are on, nothing else should be connected to the Encoder 2 
inputs.  The signal can be interpreted either as quadrature or as pulse (HWCA) and direction (HWCB), 
depending on the value of I905.  I905 also controls the direction sense of this input.  Make sure that the 
Encoder 2 jumper E26 is set for single ended signals, connecting pins 1 and 2. 

Analog Input 
The Wiper analog input (0 to +10V on PMAC-PC, -VME, and -STD; -10V to +10V on PMAC-Lite, 
referenced to digital ground) provides an input to a voltage-to-frequency converter (V/F) with a gain of 25 
kHz/Volt, providing a range of 0-250 kHz.  The output of the V/F can be connected to the Encoder 4 
counter using jumpers E72 and E73.  If these jumpers are on, nothing else should be connected to the 
Encoder 4 inputs.  Make sure that the Encoder 4 jumper E24 is set for single-ended signals, connecting 
pins 1 and 2. 

Frequency Decode 
When used in this fashion, Encoder 4 must be set up for pulse-and-direction decode by setting I915 to 0 
or 4.  Usually a value of 4 is used, because with CHB4 (direction) unconnected, a positive voltage causes 
the counter to count up. 
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Power Supply 
For the V/F converter to work, PMAC must have +/-12V supply referenced to digital ground.  If PMAC 
is in a bus configuration, this usually comes through the bus connector from the bus power supply.  In a 
standalone configuration, still this supply must be brought through the bus connector (or the supply 
terminal block on the PMAC-Lite), or it must be jumpered over from the analog side with E85, E87, and 
E88, defeating the optical isolation on the board. 

PMAC-Lite Special Considerations 
Since the PMAC-Lite’s Wiper input has bipolar capability, it has a few special considerations.  If used in 
bipolar fashion, the offset potentiometer (R18) should be adjusted for minimum deadband in the zero 
crossing (monitor on CHA4 on the JMACH1 connector).  If used in unipolar fashion, R18 should be 
adjusted for some deadband to assure that 0V in creates no frequency; also jumper E73 should be left 
OFF to make sure no glitches get into the sign bit of the counter. 

On PMAC-Lite, the pulse and direction signals may be output on the CHA4 and CHB4 pins, respectively, 
of the JMACH1 connector.  These can be used to command a stepper-motor driver.  The DAC4 output 
can be wired into the WIPER input, which provides both the feedback that the servo loop requires, and 
the command signals to the driver.  This permits the PMAC-Lite to drive one stepper motor without a 
special accessory board. 

Software Processing 
The encoder conversion table can then take the difference in the counter each servo cycle and scale it, 
providing a value proportional to frequency, and therefore to the input voltage.  Usually this is used for 
feedrate override (time base control), but the resulting value can be used for any purpose.  Refer to the 
Time-Base Control section in this manual. 

Status Outputs 
There are five dedicated low-true outputs on the JPAN connector, usually used to light LEDs.  They are 
BRLD/ (buffer-request LED), IPLD/ (in-position LED), EROR/ (Error condition LED), F1LD/ (1st 
warning following error LED), and F2LD/ (which goes true when the watchdog timer trips).  BRLD/, 
ERLD/, and F2LD/ are global status lines.  IPLD/ and F1LD/ are coordinate-system specific status lines.  
If I2=0, they refer to the panel-selected coordinate system (by FDPn/).  If I2=1, they refer to the host-
selected coordinate system (&n). 

If I2=0 but no coordinate system is selected (all FPDn/ inputs are floating or pulled high), these lines can 
be used as general purpose outputs, addressed as bits 20-23 of Y:$FFC2 (Y:$FFFD bits 0-3 on PMAC-
STD). 

Display Port Outputs (JDISP Port) 
The JDISP connector (J1) allows connection of the ACC-12 or ACC-12A liquid crystal displays, or of the 
ACC-12C vacuum fluorescent display.  Both text and variable values may be shown on these displays 
using the DISPLAY command, executing in either motion or PLC programs. 
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Figure 4 Using the PMAC Control Panel Analog (Wiper) Input 
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SETTING UP A MOTOR 
What is a Motor? 
A motor, to PMAC, is a unit that has feedback, output, flags, and potentially a master.  A motor is set up 
by assigning it these attributes and activating it.  This is done through the use of I (initialization) 
variables.  Position information is typically pre-processed through a structure known as the Encoder 
Conversion Table, explained below. 

Defining the Motor 
The settings of a few I-variables define the motor for PMAC.  That is, they tell it where to get its inputs, 
and where to put its outputs (which is as much as PMAC can really know).  By making all of these 
locations set up by variable values, PMAC provides incredible flexibility in setting up a system.   

Motor I-Variables 
Each motor has an identical set of I-variables.  The hundreds digit of the I-variable number corresponds to 
the number of the motor.  To refer to a motor I-variable generically, we replace the hundreds digit with 
the letter x, where x represents the number of whichever motor we are dealing with at the time (for 
example Ix03 could represent I103, I203, I303, and so on, to I803). 

The default values of the variables provide the settings that most will want to use, so they will not need to 
change these settings.  But if a different setup from the default is desired, it is a simple matter of changing 
a variable or two. 

Activating the Motor 
Variable Ix00 for Motor x controls whether PMAC does calculations for this motor or not.  If using Motor 
x at all, set Ix00 to 1 (activated).  If not using the motor at all, set Ix00 to 0 (de-activated), so PMAC does 
not waste processor time doing calculations for the non-existent motor.  An activated motor can be either 
enabled or disabled; activation simply means that PMAC is paying attention to what happens on the 
motor. 

Does PMAC Commutate This Motor? 
Virtually all motors need to be commutated somehow — the only significant exception is the voice-coil 
motor.  The important question here is whether or not PMAC does the commutation.  If the commutation 
is done inside the motor (as in brush motors) or in the amplifier, PMAC does not need to do the 
commutation, and Ix01 must be set to 0.  If this is the case, only one analog output is required for the 
motor, and it does not matter what the settings of the commutation I-variables (Ix70-Ix83) are. 

If PMAC is to perform the commutation for the motor, Ix01 must be set to 1.  In this case, two analog 
outputs are required for the motor, and Ix70-Ix83 must be set up to commutate the motor properly.  Refer 
to the Setting Up PMAC Commutation section in this manual. 

Address I-Variables 
Each motor has several address I-variables.  These pointer variables contain the address in the PMAC 
memory and I/O space of a register where PMAC will read or write data automatically.  These variables 
include Ix02, Ix03, Ix04, Ix05, Ix10, Ix25, Ix81, and Ix83.  Because PMAC has a 16-bit address bus, it 
takes 16 bits (four hexadecimal digits) to specify an address.  However, the address I-variables are 24-bit 
values, and the upper eight bits can be used to specify alternate modes for using the designated register.  
If all of the upper bits are zero, the register is used in the default fashion.  Refer to the individual I-
variable descriptions in the PMAC & PMAC2 Software Reference Manual, for details on the alternate 
usage modes for each of these I-variables. 
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To the beginner, the need to specify addresses for input and output may seem cumbersome.  However, for 
basic applications, most can use the sensible default values (Motor n uses DACn, Encoder n, and Flags n), 
and the ability to assign inputs and outputs at will provides unprecedented flexibility in more 
sophisticated applications. 

Hex vs. Decimal Reporting 
If I9 is 0 or 1, PMAC will report address I-variable values as decimal numbers.  If I9 is 2 (default) or 3, it 
will report these values as hexadecimal numbers.  Usually, it is much easier to interpret these values as 
hexadecimal numbers, especially when alternate modes are used, because the address digits themselves 
can be seen.  For example, setting I102 to $C003 (49155) specifies the use of DAC1 for Motor #1 
command output in the normal bipolar mode.   

Setting bit 16 to 1 tells PMAC to use the register in unipolar (magnitude and direction) mode.  In 
hexadecimal form, PMAC would report this value back as $1C003, so the address is still obvious, but in 
decimal form, PMAC would report 114691, completely obscuring the address. 

Selecting the Output(s) 
Variable Ix02 determines in which register (or pair of registers, if PMAC-commutated) motor x places its 
command output every cycle.  The value of Ix02 is the address of the register.  This is almost always a 
digital-to-analog-converter (DAC) register.  The default value of Ix02 is the register address of DACx 
(e.g., Motor 1 uses DAC1 by default). 

Pulse and Direction Output 
PMAC can command drives that accept pulse-and-direction inputs — stepper drives and stepper-
replacement servo drives.  The analog output from PMAC is converted to a pulse train through a voltage-
to-frequency converter on the ACC-8D Opt 2 board.  The PMAC output must be set in sign-and-
magnitude mode by setting bit 16 of Ix02 to 1.  The pulse train can be fed back to PMAC for a simulated 
servo loop, or an actual encoder can be used. 

Selecting the Position Loop Feedback 
Variable Ix03 determines from which register Motor x gets its actual position information to close its 
position loop every servo cycle.  The value of Ix03 is the address of the register.  Usually, this is a register 
in the Encoder Conversion Table that contains processed information from a feedback device.  With the 
default setup of the Encoder Conversion Table, the default value of Ix03 is the register address of 
processed data from Encoder x (e.g., Motor 3 uses Encoder 3 by default). 

Selecting the Velocity Loop Feedback 
Variable Ix04 determines from which register Motor x gets actual position information to close its 
velocity loop every servo cycle.  The value of Ix04 is the address of the register.  Usually, this is a register 
in the Encoder Conversion Table that contains processed information from a feedback device.  With the 
default setup of the Encoder Conversion Table, the default value of Ix04 is the register address of 
processed data from Encoder x (e.g. Motor 3 uses Encoder 3 by default). 

Dual Feedback Systems 
In most systems, this register is the same register that is used for closing the position loop, which means 
that Ix03 equals Ix04.  However, the concept of dual feedback is becoming increasingly popular in motion 
systems today.  In such a system, there are position sensors on both the motor and the load.   
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Accuracy vs. Stability 
A sensor on the load (often a linear scale) provides a more accurate measure of position than a sensor on 
the motor, because its accuracy is not affected by imperfections in the motor-load coupling.  However, it 
can also make the axis less stable, because these coupling imperfections (typically compliance and 
backlash) are now inside the loop.  A sensor on the motor, while less accurate provides better stability 
because these imperfections are not inside the loop. 

In many cases, it is possible to get both accuracy and stability by using sensors on both the motor and the 
load.  In a PMAC system, simply use the load encoder to close the position loop (for accuracy), using 
Ix03 to point to this encoder; and use the motor encoder to close the velocity loop (for stability), using 
Ix04 to point to this encoder. 

Note 

When using dual feedback, the motor flags specified by Ix25 (see below) should 
have the same number as the position-loop encoder.  Otherwise, the hardware 
position-capture function for homing will not work, and the less accurate software 
position-capture function must be used.  For example, if the velocity-loop encoder 
is ENC1 (Ix04=$0720) and the position-loop encoder is ENC2 (Ix03=$0721), the 
motor flags must be Flags 2 (Ix25=$C004) in order to use the hardware position 
capture.  If the flags are of a different number, the software position capture 
function must be specified for homing by setting bit 16 of Ix03 to 1 (e.g., 
Ix03=$10721). 

Selecting the Master Position Source 
Variable Ix05 determines from which register Motor x gets its master position information.  The value of 
Ix05 is the address of the register.  This is almost always a register in the Encoder Conversion Table that 
contains processed information from a position sensor.  With the default setup of the Encoder Conversion 
Table, the default value of Ix05 is the register address of processed data from Encoder 2 (i.e., all motors 
use Encoder 2 as a master).  This setting permits a single master encoder to be brought in on the control-
panel port (J2), and have any motor follow it if that motor's following function is enabled. 

The master position is the source of data for the PMAC position following function (often called 
electronic gearing).  This topic is covered in detail in the Synchronizing PMAC to External Events section 
of this manual. 

Selecting the Flag Register 
Variable Ix25 determines which register Motor x uses for its flag inputs (limits, home flag, amplifier 
fault, and index channel) and output (amplifier-enable/direction).  The value of Ix25 is the address of the 
register.  Usually, this is a control/status register in the DSPGATE IC.  The default value of Ix25 is the 
register address of the control/status register for Encoder x (e.g. Motor 4 uses +LIM4, -LIM4, HMFL4, 
FAULT4, CHC4, and AENA4/DIR4).  In order to use the accurate hardware position capture function for 
homing, the number of the flag set must match the number of the position-loop encoder specified by Ix03. 

Selecting the Power-Up Mode 
Variable Ix80 determines whether the motor will be enabled or disabled at the end of the power-up/reset 
cycle.  If Ix80 is 1, the motor will be enabled automatically at the end of the power-up/reset cycle, in a 
closed-loop, zero velocity state, with the commanded position set equal to the actual position at the time.  
If a phasing search is required for a PMAC-commutated motor, it will be done automatically.  If Ix80 is 0, 
the motor will be left disabled (killed);  a command will be required to enable the motor: for a PMAC-
commutated motor, the $ command must be used; for a motor not commutated by PMAC, either the $ or 
J/ command may be used, or the A command for all the motors in a coordinate system, or the <CTRL-
A> command for all PMAC motors. 
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Types of Position Sensors 
PMAC is designed to take incremental encoder feedback without any accessories.  With the appropriate 
accessories, it can also take resolver, absolute encoder, analog, or magnetostrictive linear displacement 
transducer feedback.  These features are explained in further detail below.  

Quadrature Encoder Feedback 
PMAC can take quadrature encoder signals as position feedback with software programmable decode 
selection of x1, x2, or x4 decode (pulse and direction decode is also possible).  Encoder I- variable 0 
(I900, I905, etc.) determines the decode method and direction sense for each encoder.  The 24-bit 
hardware counter is software-extended to over 36 bits (64 billion counts).  A software parameter (Ix27) 
allows position rollover at a user-specified value: this is especially useful for rotary axes.  Any unused 
encoder counter in a DSPGATE IC may be utilized as a hardware timer (refer to I900 description). 

1/T Sub-count Interpolation 
There are two optional methods on PMAC for achieving sub-count resolution with incremental feedback.  
The first is called 1/T decoding.  Each encoder channel has two timer registers associated with it.  The 
first register holds the time between the last two encoder transitions.  Velocity is estimated as being 
inversely proportional to this time — a very accurate estimation, particularly at low speeds.   

The second timer holds the time since the last transition.  Fractional distance traveled since the last 
transition is estimated as the value of the second timer divided by the value of the first timer (see figure 7-
3).  This interpolation provides added smoothness to low speed moves, but it does not provide accurate 
interpolation at rest.  1/T decoding requires the $00 conversion format (see below). 

Parallel Sub-count Interpolation 
The second method of interpolation allows PMAC to read up to five bits of parallel fractional information 
to supplement the integer quadrature count.  Usually this information is derived from analog sine/cosine 
quadrature signals of encoders or interferometers through analog-to-digital converter circuitry.  This 
circuitry, which creates digital quadrature and the parallel fractional bits, must be external to PMAC, 
either on Delta Tau’s ACC-8D Opt 8 Analog Encoder Interpolator board, or on user-provided circuitry.  
PMAC provides simultaneous latching of the quadrature counter and the parallel inputs to ensure 
synchronicity of the data. 

This interpolation method, unlike the 1/T method, provides accurate interpolation at rest as well as during 
movement.  If the A/D conversion circuitry does not provide accurate interpolation at high speeds, it is 
possible to change on the fly between 1/T and parallel interpolation. 

This type of sub-count extension may be done only on odd-numbered encoders.  The five bits are the five 
inputs associated with the next higher-numbered encoder: FAULT (MSBit), +LIM, -LIM, HMFL, and 
CHC (LSBit).  Parallel sub-count extension requires the $80 conversion format (see below). 
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Figure 6 PMAC 1/T Extension 

Hardware Changes 
To implement this type of feedback properly, several settings in hardware and software must be changed 
from the default.  First, the socketed opto-isolators for the flag bits being used as interpolated bits must be 
removed and replaced with hard-wired shunts so the signals are not delayed.  This will tie the flag 
circuitry to the digital circuitry.  In this case, usually it is desirable to supply the remaining true flags from 
the digital +12V circuitry (by moving the E90 jumper) and to tie the low ends to digital ground (GND); 
this will retain the isolation between digital and analog circuitry. 

Software Changes 
In software, it is important to disable the digital delay filters on the encoder inputs of both the main 
encoder, and the encoder matching the flag bits (even though that encoder is not actually used for this 
function).  This is done by setting Encoder I-Variable 1 (I901, I906, I911, etc.) to 1 for both of these 
encoders. 

Parallel Position Feedback 
PMAC can take parallel position feedback (e.g., from an absolute encoder, laser interferometer, or an 
already converted analog signal) through its I/O expansion board (Accessory 14D/V).  Each ACC-14D/V 
board has 48 bits of input, so it may be connected to two parallel feedback devices of up to 24 bits each, 
or one of over 24 bits.  Up to six ACC-14D boards may be connected to a single PMAC.  The parallel 
feedback devices must provide straight binary data, not gray code.  The PMAC internal registers will 
extend the count automatically if the parallel device rolls over (unless the PMAC register is set up to roll 
over as well). 

Parallel position feedback requires one of the conversion formats $20, $30, $60, or $70 (see below). 
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Figure 7 Interpolated Encoder Feedback 
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Parallel Absolute Feedback 
When using an absolute encoder as the feedback device, the data is presented to PMAC in parallel form.  
All lines must be presented together; no high-word low-word select schemes are permitted.  With the 
absolute nature of the device, the power-on/reset position is not automatically zero.  For this type of 
device, PMAC can use the Ix10 parameter to read the absolute power-on/reset position up to a width of 
48 bits.  If Ix10 is set to 0, the absolute power-on/reset position read function is disabled, and the power-
on/reset position is set to zero, regardless of the setting of the sensor, and subsequent position readings are 
incrementally referenced to this zero position.  For more information, refer to the Absolute Power-Up 
Position section in this manual and to the Ix10 description in the Software Reference manual. 

Sensor Rollover 
If the overall travel for the axis is more than the range of the absolute device, PMAC will automatically 
extend the position in software to handle rollover.  In this case, however, the device should be considered 
a parallel incremental device (see next section).  A device can be considered absolute for commutation 
purposes, so no power-on phasing search is required (set Ix81=0 if PMAC is doing the commutation), but 
still incremental for overall machine positioning functions.  In most systems, single-turn resolvers and 
absolute encoders have this functionality.  Refer to the Phasing Referenced to an Absolute Sensor in 
Setting Up PMAC Commutation section in this manual for more information on this type of setup. 

It is important with this type of feedback device to perform a PMATCH (position-match) function before 
the first programmed move after power-up/reset.  Usually this is done automatically by having I14 equal 
to 1.  If this is not done, PMAC will calculate the first move for the motor assuming a starting point of 
zero, instead of the true position, leading to unexpected performance on the first move. 

Parallel Incremental Feedback 
A device such as a laser interferometer often provides parallel feedback data, but the device is 
fundamentally incremental, so it does not know where it is on power-on/reset.  The PMAC setup to accept 
this type of feedback is the same as for an absolute parallel device, but recognize that a homing procedure 
is necessary.  For this type of device, leave Ix10 equal to zero, so that PMAC does not perform an 
absolute power-on/reset position read. 

However, since the position information is not absolute, and since PMAC has the ability to extend 
position range in software, it is not necessary to bring all the lines of a device to PMAC.  This can save 
money on interfacing costs.  All that is needed is enough lines (starting from the LSB) so that half the 
range of those lines will not be covered in a single servo cycle.  For instance, a typical interferometer 
interface has 32 bits of parallel data.  Even with a servo cycle of 1 msec, which is slow for PMAC, wiring 
only the low 16 lines to PMAC is sufficient as long as the maximum speed is less than 32,768 (215) 
counts/msec, or 32,768,000 counts/sec. 

Software Capture on Homing 
The motor using this device for position feedback must be programmed to do a software position capture 
on a homing search move, instead of the hardware position capture performed with incremental encoders.  
This is done by setting bit 16 of variable Ix03 for the motor to 1 (if Ix03 were $0720, it would become 
$10720).  The delay in software capture can be a few milliseconds; the speed of the homing search move 
may need to be limited for high homing accuracy. 

Linear Displacement Transducer Feedback 
PMAC can accept feedback from a linear displacement transducer (LDT) through its ACC-29 interface 
board.  (The best-known brand name for this type of device is Temposonics from MTS Corp.)  This type 
of device operates much like sonar, and what is being measured is the time before the "echo" is returned.  
ACC-29 uses the timer registers of its on-board DSP-GATE ICs to record this information; the larger the 
time, the longer the distance. 
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To PMAC itself, this type of feedback looks like an absolute encoder.  The source of the data is the 
appropriate timer register, not the ACC-14D I/O register.  The $20 or $30 conversion format would be 
used, and the data would be found in the Encoder 9 through Encoder 16 timers that measure the time 
between the last two pulses (Y:$C020, Y:$C024, ... Y:$C03C).  See below under Parallel Position 
Feedback Entries for instructions on the software setup for this type of feedback. 

For this type of device, PMAC can use the Ix10 parameter to read the absolute power-on/reset position up 
to a width of 24 bits.  If Ix10 is set to 0, the absolute power-on/reset position read function is disabled, 
and the power-on/reset position is set to zero, regardless of the setting of the sensor, and subsequent 
position readings are incrementally referenced to this zero position.  For more information, refer to the 
Absolute Power-Up Position section in this manual, the Ix10 description in the Software Reference 
manual, and the ACC-29 MLDT Interface manual. 

It is important with this type of feedback device to perform a PMATCH (position-match) function before 
the first programmed move after power-up/reset.  Usually this is done automatically by having I14 equal 
to 1.  If this is not done, PMAC will calculate the first move for the motor assuming a starting point of 
zero, instead of the true position, leading to unexpected performance on the first move. 

Analog Position Feedback 
If analog feedback is desired, for instance from a potentiometer or an LVDT, PMAC can accept high-
band width analog feedback through one of its analog-to-digital converter boards (ACC-23 or ACC-28).  
Any modulated analog position signal must be demodulated before it is presented to the PMAC system so 
that a fixed position is represented by a DC voltage.  PMAC does not support the software extension of 
analog position feedback through its accessory cards, so no rollover should be permitted.  Analog 
feedback through ACC-23 or ACC-28 requires conversion format $10 (see below). 

If the analog data is converted to digital form external to PMAC or its accessory boards, then it will be 
fed into PMAC as a parallel data word, and PMAC will treat it like an absolute encoder (see above). 

For this type of device, PMAC can use the Ix10 parameter to read the absolute power-on/reset position up 
to a width of 16 bits.  If Ix10 is set to 0, the absolute power-on/reset position read function is disabled, 
and the power-on/reset position is set to zero, regardless of the setting of the sensor, and subsequent 
position readings are incrementally referenced to this zero position.  For more information, refer to the 
Absolute Power-Up Position section in this manual, the Ix10 description in the Software Reference 
manual, and the ACC-28 or ACC-36 A/D Converter manual. 

With the V1.15 firmware, it is also possible to use the A/D converters on a single ACC-36 for servo-loop 
feedback.  I60 and I61 are used to specify the address and number of ACC-36 ADC registers to be copied 
into RAM automatically during phasing interrupts.  The servo loop feedback functions read the data from 
these RAM registers, and should treat the data as 12-bit parallel position feedback (see above section). 

For this type of device, PMAC can use the Ix10 parameter to read the absolute power-on/reset position up 
to a width of 12 bits.  If Ix10 is set to 0, the absolute power-on/reset position read function is disabled, 
and the power-on/reset position is set to zero, regardless of the setting of the sensor, and subsequent 
position readings are incrementally referenced to this zero position. 

It is important with this type of feedback device to perform a PMATCH (position-match) function before 
the first programmed move after power-up/reset.  Usually this is done automatically by having I14 equal 
to 1.  If this is not done, PMAC will calculate the first move for the motor assuming a starting point of 
zero, instead of the true position, leading to unexpected performance on the first move. 
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Resolver Feedback 
PMAC can accept resolver feedback through its ACC-8D Option 7 resolver-to-digital converter board.  
This board, which can be purchased in two-channel and four-channel configurations, processes the 
resolver data two ways: first into an absolute word (within one revolution of the resolver), and second, 
into a quadrature signal.  Both have 4096 counts per electrical cycle of the resolver.  An electrical cycle is 
a pole-pair, so a 4-pole resolver has two electrical cycles per mechanical revolution, or 8192 counts. 

The reading of the absolute word is too slow to perform every servo cycle, so in typical use, this is only 
done at power-up/reset, if at all.  The ongoing position is received from the quadrature encoder counter to 
which the converted quadrature signal has been connected.  To the PMAC software, this then looks 
exactly like a real quadrature encoder. 

For this type of device, PMAC can use the Ix10, I9x, and I8x parameters to read the absolute power-
on/reset position of a single resolver, or of a system of 2 or 3-geared resolvers.  If Ix10 is set to 0, the 
absolute power-on/reset position read function is disabled, and the power-on/reset position is set to zero, 
regardless of the setting of the sensor, and subsequent position readings are incrementally referenced to 
this zero position.  If the absolute position of a single-turn resolver will be used only to prevent the need 
for a power-on phasing search, Ix81 is used to specify the absolute power-on phase position read.  For 
more information, refer to the Absolute Power-Up Position section in this manual, the Ix10 description in 
the Software Reference manual and the ACC-8D Opt 7 R/D Converter manual.   

Absolute Power-Up Position 
In some applications, it is not permissible or desirable to do a homing search move after power-up or 
reset.  In these applications, an absolute position sensor can be used so that the true position is known 
immediately on power-up/reset and there is no need to move to a known home position.  The typical 
sensors used for this purpose are absolute encoders and resolvers.  PMAC can support absolute power-on 
position reading from both of these sensors. 

Absolute Position Range 
To get absolute power-on position sufficient that no homing search move is required, the position sensor 
must be absolute over the entire range of travel of the axis.  If the travel covers multiple revolutions of the 
motor and the sensor is absolute over only a single turn of the motor, a homing search will still be 
required.  Although such a sensor can be used for power-on phasing of a brushless motor, for these 
purposes, the sensor should be treated as an incremental sensor.  See Phasing Referenced to Absolute 
Sensor in the Commutation section of this manual, and the descriptions of Ix75 and Ix81 for information 
on power-on phasing. 

If power-on absolute position of a system is desired without any rollover of the position, the rollover 
point(s) of the absolute sensor must be outside the range of travel.  If treating the absolute position 
information as an unsigned quantity, the rollover points are the zero positions of the sensor.  If treating the 
absolute position information as a signed quantity, the rollover points are half way in between the zero 
positions. 

Each Motor x on PMAC has the variables Ix10, I9x, and I8x to support the absolute power-up position 
read.  Ix10 specifies the register address in PMAC of the absolute sensor, and the method for reading it.  
I9x and I8x are used to specify second and third resolvers if a geared resolver system is used to determine 
power-on position. 
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Parallel-Data Position 
Ix10 can specify two types of feedback.  If the absolute position data is presented to PMAC as a parallel 
word, usually through an ACC-14 I/O board, then the address specified in the low 16 bits of Ix10 is the 
address of the 'Y' PMAC register that holds this data (e.g., $FFD1).  The high eight bits of Ix10 specify 
the number of bits to use at this register (and potentially the next higher register as well), with the most 
significant bit specifying whether the quantity is to be treated as a signed or unsigned value, and the 
second most significant bit (bit 22) specifying whether the data comes from an X-register or a Y-register.   

Valid values for the number of bits in this mode are 8 to 48 ($08 to $30).  If the most significant bit (value 
$80) is set to 1, giving a range for the high eight bits of $88 to $B0, the number read from the sensor is 
treated a signed quantity, with a range of -(2N-1) to +2N-1-1, where N is the number of bits.  If the 
MSBit of Ix10 is zero, the sensor value is treated as an unsigned quantity, with a range of 0 to 2N-1.  
Virtually all parallel I/O sources map into Y-registers in PMAC, so usually bit 22 (X/Y specification) is 
set to 0 to specify a Y data source. 

Example 
As an example, for a 22-bit absolute encoder on Port B of the first ACC-14 (Y:$FFD1) to be read as an 
unsigned quantity, Ix10 would be set to $16FFD1 (16 hex is 22 decimal); to be read as a signed quantity, 
Ix10 would be set to $96FFD1.  For a 32-bit absolute sensor with the low 24 bits at Port A of the first 
ACC-14 (Y:$FFD0) and the high eight bits at Port B (Y:$FFD1) to be read as an unsigned quantity, Ix10 
would be set to $20FFD0 (20 hex is 32 decimal); to be read as a signed quantity, Ix10 would be set to 
$A0FFD0. 

Note 

A sensor with parallel data output is not necessarily an absolute sensor.  Laser 
interferometers often present their position data in parallel form, but they are 
incremental sensors and a motor using one for position feedback still must be 
homed.  Ix10 should be left at 0 (no absolute power-on read) for any incremental 
sensors. 

Resolver Position 
The other type of power-on position data that can be specified with Ix10 is serial data from an ACC-8D 
Option 7 resolver-to-digital (R/D) converter board brought in through the thumbwheel multiplexer port.  
In this format, the low 16 bits of Ix10 specify the multiplexed address on this port, a value from 0 to 256 
decimal matching the address set on the board with DIP switches.  (Multiplexer addresses are even 
numbers ranging from 0 to 254; a value of 256 ($0100) should be used to specify multiplexer address 0, 
because PMAC interprets a value of 0 to mean no absolute power-on position read).   

The high eight bits of Ix10 contain a value from 0 to 7 specifying the location of the particular R/D 
converter at that multiplexer address — there are potentially eight at each multiplexer address.  Also, the 
most significant bit (value $80) specifies whether the position is to be treated as a signed or unsigned 
quantity.  If the MSBit is set to 0, the value read from the resolver is treated as an unsigned quantity, with 
a range of 0 to 4095; if the MSBit is set to 1, the value is treated as a signed quantity, with a range of -
2048 to 2047.   

For example, to use an R/D at location 3 of multiplexer address 2, treating the value as an unsigned 
quantity, Ix10 would be set to $030002; treating the value as a signed quantity, Ix10 would be set to 
$830002.  To use an R/D at location 0 of multiplexer address 0, treating the value as an unsigned 
quantity, Ix10 would be set to $000100; treating the value as a signed quantity, Ix10 would be set to 
$800100. 
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Geared Resolvers 
Typically, a single resolver on the back of the motor is not sufficient to determine power-on position.  If 
true power-on position information is required, a set of geared resolvers is used, each one geared down to 
a slower speed, and therefore a coarser resolution, than the resolver before it in the chain.  The first 
resolver, usually on the back of the motor and rotating with the motor, turns the fastest and has the highest 
resolution.  It is called the fine resolver or the first resolver.  The last resolver in the gear chain turns the 
slowest and has the lowest resolution.  It should never turn more than one revolution — one electrical 
cycle, really — and it is called the coarse resolver. 

Theoretically, any number of geared resolvers can be used to establish power-on position.  In practice, 
most systems use two or three resolvers.  In a two-resolver system, these are called the fine and coarse 
resolvers.  In a three-resolver system, they are called the fine, medium, and coarse resolvers.  Since 
PMAC can interface to both two- and three-resolver systems, the terminology first resolver or primary 
resolver will be used for the fine resolver connected directly to the motor shaft.  The resolver geared 
down from the first resolver — coarse in a two-resolver system, medium in a three-resolver system — 
will be called the second(ary) resolver.  The next resolver will be called the third resolver. 

If a set of geared resolvers is to be used to determine power-on position with PMAC, variables I9x, and 
possibly I8x must be changed from their default values of zero as well.  The second resolver must be 
connected to the R/D converter at the next higher location at the same multiplexer address than the 
primary resolver.  I9x represents the gear ratio between the primary and secondary resolvers.  It must be 
an integer number.  If the second resolver is geared down from the primary resolver by a 16:1 ratio, I9x 
would be set to 16.  A value of 0 for I9x tells PMAC that there is no secondary resolver. 

If there is a third resolver geared down from the second resolver, I8x is used to specify the gear ratio 
between the second and third resolvers.  The third resolver must be connected to the R/D converter at the 
next higher location at the same multiplexer address than the second resolver.  It must be an integer 
number.  If the ratio between the two is 36:1, I8x would be set to 36.  A value of 0 for I8x tells PMAC 
that there is no third resolver. 

Even in a geared-resolver system, the most significant bit of Ix10 determines whether the combined 
quantity will be treated as a signed or unsigned value.  If it is to be treated as unsigned, the zero position 
should be set up past the negative end of travel, so power-up position cannot be to the negative side of 
zero.  If it is to be treated as signed, the zero position should be in the normal range of travel; setting it in 
the middle of travel maximizes the usable range of the axis. 

On any motor using a resolver or resolvers for position feedback, all position information used in the 
servo loop after the initial power-on read comes through the quadrature signals generated by the R/D 
converter for the primary resolver, counted in one of the PMAC encoder counters.  The software setup to 
support this (Ix03, Ix04, conversion table) is the same as for a real quadrature encoder.  There is no need 
to used the quadrature signals generated from the second or third resolvers for the motor. 

Axis Offset 
What if the absolute sensor’s zero position is not where the axis’ zero position for programming purposes 
should be?  This is a very common occurrence, both because it is difficult to line up the sensor exactly, 
and because the zero position of the sensor typically must be outside the range of travel if the position 
information is treated as an unsigned value. 

The difference between sensor (motor) zero and axis zero can be set by the axis offset parameter of the 
axis definition statement for the axis.  This parameter, with units of counts, should contain the axis 
position when the sensor position is zero.  It is independent of the axis scale factor (counts per 
engineering unit) in the same axis definition statement. 
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For instance, to assign Motor #1 to the X-axis with 10,000 counts per unit, if the axis zero position should 
be at the point where the absolute sensor reads 50,247 counts, then the axis position would be -50,247 
counts when the sensor reads zero, so the axis definition statement would be: #1->10000X-50247. 

Encoder Offset 
If using resolvers for absolute power-on position information, subsequent position information comes 
through the encoder counters, which are set to zero on power-on.  For most purposes, this is transparent to 
the user, but to use encoder registers directly, usually for position capture and compare functions, then 
know the difference between the encoder-counter zero position, and the motor (resolver) zero position.   

This value is kept in the Motor Encoder Position Offset Register [Y:$0815 (Motor 1), Y:$08D5 (Motor 
2), etc.].  For an example of the use of this register, see the Storing the Home Position under Basic Motor 
Moves section of this manual. 

Encoder Conversion Table 
The PMAC Executive Program for PC compatible computers has a special editing screen for the 
conversion table that makes viewing it and changing it very easy.  The detailed instructions here show 
how to view and change the table even without the help of the executive program screens. 

PMAC uses a multiple-step process to work with its feedback and master position information, and with 
external time-base sources, to provide maximum power and flexibility.  For most PMACs with quadrature 
encoders, this process can be virtually transparent, with no need to worry about the details.  However, 
some basic understanding is needed of this conversion process to make the changes necessary to use other 
types of feedback, to optimize the system, or to perform special functions.   

The first step in the position and time-base conversion process is the hardware encoder counters with 
associated timers, A/D registers, or accessory cards for parallel input.  These work continually without 
direct software intervention (although they can be configured through software).  Beyond this point, the 
process is software-controlled.  At the start of each servo cycle, a servo interrupt signal is sent out to latch 
all of the registers. 

At this point, PMAC uses a software structure called the Encoder Conversion Table to process the 
information in the latched registers.  This table tells PMAC what registers to process, and how to process 
them; it also holds the intermediate processed data. 

Ix03: Position Loop Feedback Address
Ix04: Velocity Loop Feedback Address
Ix05: Master Position Address
Ix93: Time Base Source Address

To Servo
Algorithms

Address
Encoder Conversion

Table
Data Address

Data

PMAC Hardware
Registers

Conversion Instructions:
Process & Address

Processed
Feedback Data

RAM

Raw
Feedback

Data

Encoder Counters
& Timers, Latches, ADC's

Servo Address
I-Variables

Feedback
Data Signals

 
Figure 8 - Encoder Conversion Table Process 
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Conversion Table Structure 
The Encoder Conversion Table has two columns, one in the X memory space of the processor, and one in 
the Y memory space.  The X-column holds the converted data, while the Y-column holds the addresses of 
the source registers, and the conversion methods used on the data in each of those source registers.  
Basically, set up the table by writing to the Y-column, and PMAC uses the Y-column data to fill up the 
X-column each servo cycle. 

 
Figure 9 – Configure Encoder Conversion Table Editing Screen 

Conversion Methods 
The chart below lists the possible conversion formats.  To do a conversion, the 8-bit format is matched 
with a 16-bit address to fill the 24-bit Y-word in the conversion table.  If there is more than one row for a 
given conversion type, the other Y-words are further setup parameters for the conversion.  The conversion 
result is placed in the last (highest address) X-word, and the other X-words hold intermediate data. 

Adding Entries 
For many conversion table entries — those with a second digit of x or y in the above table — setting bit 
16 of the setup word to 1 means that the result of the conversion is not just from the specified source.  
Instead, it is the sum of this entry and the entry above in the table.  This permits the servo feedback to use 
the sum of two sensors.  (If the polarity of the sensors or their counters is opposite, this provides the 
difference of the sensors.  This can be useful for doppler-type sensors, where the reference wave and the 
shifted-frequency wave are fed into different counters, one counting up, the other counting down; 
summing the two counters provides position.)  
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Example Setup Words: 
WX:$720,$00C000 ;/T entry for encoder channel 1 
WX:$721,$01C004 ;/T entry for encoder channel 2 summed with  
 ;channel 1 
WX:$722,$680721, $FFFFFF ;Intermediary entry for sum of encoder  
 ;channel 1 and 2 
WX:$724,00C008  ;/T entry for encoder channel 3 summed with  
 ;Intermediary entry 

Each type of conversion is now discussed below. 

Note 

If the conversion table has two or more summing entries in a row, only the first 
entry will perform summing.  The other entries will only process their source data 
with no summing.  This means that it is not possible to directly sum three or more 
sources.  To sum three or more sources, an intermediary non-summing entry must 
be used between the second and third source entries.  This is accomplished by 
reading the output of the second entry (the first summed entry) with an entry using 
the $68 format.  This entry can then be summed into a third source entry using the 
standard technique. 

PMAC Encoder Conversion Table 
X-Memory (Results) Y-Memory (Set-up) 

1.  Single Line Entry 
Bits Bits Bits Bits 
5-23 0-4 16-23 0-15 

Result:Integer Fraction Method Source Address 
2.  Multi-Line Entry 

Bits Bits Bits Bits 
5-23 0-4 16-23 0-15 

(Intermediate Result) Method Source Address 
• • • (Conversion Factors) 

Result:Integer Fraction • • • 
Figure 10 – PMAC Encoder Conversion Table Principle 
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Possible Conversion Formulas 

Y-Word  
Bits 16-23 

Conversion Type No. of 
Rows 

$0x 1/T extension of incremental encoder 1 
$1x A/D register — no rollover  1 
$2y Parallel position from Y data word no filtering — with rollover  2 
$3y Parallel position from Y data word with filtering — with rollover  3 
$4x Time base conversion scaled digital differentiation  2 
$50 Integrated analog 2 
$6y Parallel position from X data word no filtering — with rollover 2 
$7y Parallel position from X data word with filtering — with rollover  3 
$8x Incremental encoder with parallel sub-count extension  1 
$90 Triggered time base (frozen) 2 
$A0 Triggered time base (running) 2 
$B0 Triggered time base (armed) 2 
$Cx Incremental encoder without extension  1 
$D0 Exponential Filter  1 
$Ex (Reserved for future use)  1 
$Fx High-resolution sinusoidal encoder 2 

 x=0 for normal conversion, no summing 
 x=1 for conversion that sums this entry with one above it 
 y=0 for normal conversion, no summing 
 y=1 for conversion that sums this entry with one above it 
 y=8 for an unshifted conversion, no summing 
 y=9 for an unshifted conversion that sums this entry with one above it 

Incremental Encoder Entries 
Incremental encoders are converted with one of the conversion formats $0x, $8x, or $Cx.  The low 
sixteen bits of the setup word specify the address of the source on the X data bus.  For incremental 
encoders, the source address must be one of the DSPGATE encoder counters, selected from the following 
list: 

 ENC1:  $C000  ENC9:  $C020 
 ENC2:  $C004  ENC10:  $C024 
 ENC3:  $C008  ENC11:  $C028 
 ENC4:  $C00C  ENC12:  $C02C 
 ENC5:  $C010  ENC13:  $C030 
 ENC6:  $C014  ENC14:  $C034 
 ENC7:  $C018  ENC15:  $C038 
 ENC8:  $C01C  ENC16:  $C03C 

Use the addresses from this list even though the actual encoder counter register has an address two higher. 

Incremental Encoder Conversion  
X-Word:  

Converted Position Data 
Y-word:  

Source and Processing of Data 
Bits 0-4:  Fractional Bits Bits 0-15:   Word address of source data 
Bits 5-23:  Integer Bits Bits 16-23:  Conversion format 

 $00 = 1/T interpolation 
 $80 = parallel-bit interpolation 
 $C0 = no interpolation  
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The source counter already reflects the method of decoding the incoming quadrature or pulse-and-
direction waveform — whether there are one, two, or four counts per cycle.  The decode method is 
determined by Encoder I-variable 0 (I900, I905, etc.) for that encoder.  One bit in the counter is a count, 
whether it represents a full, half, or quarter wave cycle. 

1/T Interpolation 
Most people will use the 1/T-extension conversion method ($0x), which uses timers associated with each 
counter to estimate fractional resolution (see previous illustration).  A typical setup word for this would 
be $00C008, which provides 1/T-extension conversion of the encoder 3 counter. 

Parallel-Bit Interpolation 
If the set up uses the parallel sub-count interpolation for incremental feedback, use the $8x conversion 
format.  In this case, the source address must be one of the odd-numbered encoders.  A typical setup word 
in this case would be $80C010, which provides parallel extension of the encoder 5 counter using 
encoder 6’s flags. 

No Interpolation 
For conversion without any sub-count interpolation, the $Cx conversion format should be used.  A typical 
setup word in this case would be $C0C00C, which provides a non-interpolated conversion of the encoder 
4 counter. 

ACC-28 Analog-to-Digital Conversion Register Entries 
The $1x conversion format picks up data from the top 16 bits of a 24-bit word.  It is intended for use with 
the A/D converter registers in the DSPGATEs, which are fed by Accessory 23 (obsolete) or Accessory 
28.  (When using the ACC-36 A/D converter board, treat the data as 12-bit parallel-format data.)  The 
source address specifies a word in the Y memory space, and should be one of the following: 

ADC1:  $C006 ADC9:  $C026 
ADC2:  $C007 ADC10:  $C027 
ADC3:  $C00E ADC11:  $C02E 
ADC4:  $C00F ADC12:  $C02F 
ADC5:  $C016 ADC13:  $C036 
ADC6:  $C017 ADC14:  $C037 
ADC7:  $C01E ADC15:  $C03E 
ADC8:  $C01F ADC16:  $C03F 

A typical setup word for an A/D register would be $10C006, which provides the conversion of the 
ADC1 register.  With A/D conversion, there is no software extension performed, so rollover should not be 
permitted. 

The result is placed in the X-register of the entry, scaled so that there are 19 bits of integer (the highest 
three bits are simply sign-extended), and five bits of fraction (the fraction is always zero). 

Integrated Analog 
It is possible to use the conversion table to integrate an analog input or equivalent.  This is done with 
conversion format $50, instead of the $10 used for normal (unintegrated) analog conversion.  The address 
of the A/D source register is specified just as for the $10 format.  An entry to integrate the input of ADC1 
would be $50C006. 

Bias Term 
The integrated analog format requires a second entry to specify the bias of the A/D.  This is a signed 
quantity, with units of 1/256 of the LSBit of the 16-bit A/D converter.  For example, if there were an 
offset in 16-bit ADC of five LSBits, this term would be set to 1280.  If no bias is desired, a zero value 
should be entered here.  This term permits reasonable integration, even with an analog offset. 
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Result Format 
The integrated result is placed in the X-register of the second line of the entry, with 19 bits of integer and 
five bits of fraction (the fraction is always zero).  Because the input data has 16 bits (this high 16 bits of a 
24-bit word), at the maximum range of the input, there is only a 3-bit (8-times) extension of the input into 
this integrated register, with the integration performed every servo cycle.  Therefore, whatever task uses 
this information must look at the integrated register at least once every eight servo cycles to handle 
potential rollover situations.  This is no problem for the automatic servo-loop uses of the information 
(master or feedback), but it could be a problem in a background task. 

The integrated result is set to zero automatically on power-up/reset, and the integration function starts 
immediately afterward.  Any value may be written to the result register at any time (usually through an 
M-variable); make sure that nothing using the register at the time could be adversely affected by changing 
the value of this register. 

Integrated Analog Feedback 
X-Words Y-Words 

1. Intermediate data 1. Source and process: 
     Bits 0-15:  Y-Address of source data 
     Bits 16-23:   = $50 

2. Converted data: 
     Bits 0-4:  Fractional Bits 
     Bits 5-23:  Integer Bits 

2.Bias Term:  1/256 bit of 16-bit ADC 

Uses of Integrated Analog 
There are several possible uses of this format.  First, an analog velocity sensor such as a tachometer could 
be used to provide position-like information to the PMAC servo loop (remember that the velocity loop 
expects position information).  For example, consider an axis that has a motor with a tachometer, a linear 
encoder on the load for accuracy, and a current-loop amplifier for high responsiveness.  It is difficult to 
get stability using just the linear scale for both position and velocity loop because there is no direct 
information about what the motor is doing.  The tachometer can be connected to an A/D converter on an 
ACC-28 (e.g. ADC1).   

Then this conversion table entry can integrate the A/D value into what is effectively position information 
for the servo loop to use.  The source and process word would be $50C006; the bias term would be set 
empirically to hold the integrated value constant when the motor is still.  Ix04 for the motor would point 
to the second line of the entry to use the integrated value. 

Second, this makes it possible to do cascaded loops inside PMAC.  The outer loop, which could be a 
force or tension loop acting around a normal position loop, would put out a command value that is a 
velocity correction to the inner position loop.  The position loop can take a correction as position 
information from its master position register.  This conversion table entry makes it possible to convert the 
velocity output of the outer loop to the position input of the inner loop.  The outer loop would direct its 
command output to an unused internal memory register (e.g. Y:$07F0) by setting Ix02 to that register 
(Ix02=$07F0).  The integrated analog entry in the conversion table uses this register as its source 
($5007F0).  Probably no bias is needed.  Ix05 for the inner loop points to the second line of the entry, 
where the integrated value is, giving the position loop its correction. 

Unsigned Analog 
If bit 19 of the analog conversion setup word is set to 1 ($18xxxx for normal analog, $58xxxx for 
integrated analog), then PMAC treats the A/D number in the high 16 bits of the source word as an 
unsigned number with a range of 0 to 65,535 instead of a signed number with a range of -32,768 to 
32,767.  The unsigned conversion is required for use of the newer ACC-28B.  The usual signed 
conversion (bit 19 = 0) is required for use of the older ACC-28 and ACC-28A. 
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Parallel Position Feedback Conversion 
If providing position information to PMAC as a parallel data word — as from an absolute encoder or 
processed from a laser interferometer — use one of the conversion formats $2x, $3x, $6x, or $7x.  
Formats $2x and $3x get data from the specified source in Y-memory space; $6x and $7x get it from 
X-memory space.  Usually this data is brought in on an Accessory-14 board, which is in the Y-memory 
space, so the $6x and $7x formats are rarely used. 

If the x value in the conversion format is 0 or 1 (format word bit 19 = 0), the resulting data is shifted left 
five bits so that the least significant bit of the source data appears as one count to the servo algorithms, 
which expect five bits of fraction.  If the x value is 8 or 9 (format word bit 19 = 1), the resulting data is 
not shifted and the LSB appears as 1/32 count to the servo algorithms (see the Unshifted Conversion 
section in this manual).  If x is 1 or 9 (format word bit 16 = 1), the resulting data is summed with the 
result of the previous table entry.  If x is 0 or 8 (format word bit 16 = 0), no summing is performed. 

ACC-14 Source Registers 
When using ACC-14 to bring in the data, the following source addresses would be used: 

1st ACC-14 Port A (J7): $FFD0 
1st ACC-14 Port B (J15): $FFD1 
2nd ACC-14 Port A (J7): $FFD8 
2nd ACC-14 Port B (J15): $FFD9 
3rd ACC-14 Port A (J7): $FFE0 
3rd ACC-14 Port B (J15): $FFE1 
4th ACC-14 Port A (J7): $FFE8 
4th ACC-14 Port B (J15): $FFE9 
5th ACC-14 Port A (J7): $FFF0 
5th ACC-14 Port B (J15): $FFF1 
6th ACC-14 Port A (J7): $FFF8 
6th ACC-14 Port B (J15): $FFF9 

A typical setup word for this type of feedback is $20FFD0, which provides for non-filtered conversion of 
the parallel data word fed into Port A of the first ACC-14 connected to PMAC. 

Bit-Enable Mask Word 
Parallel-feedback conversion requires a double (for non-filtered) or triple (for filtered) entry in the 
conversion table.  The second entry — filtered or non-filtered — specifies the size of the feedback word 
used.  The entry is a 24-bit word in which each bit actually used for the parallel feedback is a one; the 
unused bits above are zeros (parallel feedback is typically connected starting at bit 0 of the data word).   

For a 12-bit absolute encoder, this entry would be $000FFF; for 14 bits, it would be $003FFF.  For the 
standard shifted conversion, the maximum effective mask word is $07FFFF, unmasking the low 19 bits; 
any data in the high five bits is shifted out of the word.  For the unshifted conversion, up to 24 bits of real 
data can be used with a mask word of $FFFFFF.  The mask word allows PMAC to detect rollover in the 
source data, so it can extend the count properly in software. 

Filter Word 
If the conversion format is $3x or $7x, the parallel data word is filtered.  The filter simply sets a 
maximum amount the data word is permitted to change in a single servo cycle.  If PMAC sees a change 
larger than this in the source data word, the converted data only changes by the maximum amount.  There 
is no permanent loss of position information if the filter kicks in.  
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Purpose of Filtering 
This filtering permits protection against spurious changes on high-order data lines, while not delaying 
legitimate changes at all.  This maximum amount is the third setup entry for the encoder in the Y-column 
of the conversion table.  It should be set slightly greater than the maximum actual velocity expected on 
the sensor, expressed in counts (bits) per servo cycle. 

Converted Data 
The converted data from the parallel word is put in the X data word matching the last (second or third) 
setup word for the entry.  This is the address that should be used by the motor I-variable that picks up 
position (Ix03, Ix04, or Ix05).  For instance, if the first setup entry (address Y:$0720) in the conversion 
table were $30FFD0 (filtered parallel data), the size entry would be in Y:$0721, and the maximum change 
entry would be in Y:$0722.  The converted data would be placed in X:$0722.  If this were the position 
feedback for motor #1, Ix03 would be set to $0722 (1826 decimal).  For incremental parallel feedback, bit 
16 of Ix03 should be set to 1 for proper homing search moves. 

Unshifted Conversion 
If bit 19 of the source and process word for a parallel data conversion is set to 1, the converted data 
contains no fractional bits.  Entries of this form would have the conversion formats (bits 16-23 of this 
word) $28, $38, $68, or $78, as opposed to the standard entries $20, $30, $60, and $70, which provide 
five fractional bits in the converted data.   

Unfiltered Parallel Feedback 
X-Words Y-words 

1. Intermediate data:  Sign-extended most  
significant word 

1. Source and process 
 Bits 0-15:  
   Address of source data  
   Y-word if $20 conversion 
   X-word if $60 conversion 
 Bits 16-23: 
    = $20 for Y-word source 
    = $60 for X-word source 

2. Converted data: 
 Bits 0-4:  Fractional Bits 
 Bits 5-23:  Integer Bits 

 2. Bit-enable mask 
 Bit=1 to use corresponding bit from source  
 word 
 Bit=0 not to use corresponding bit from  
 source word 
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Filtered Parallel Data Conversion 

X-Words Y-words 
1. Intermediate data: 
    Raw data reading 

1. Source and process 
 Bits 0-15:  
   Address of source data  
   Y-word if $30 conversion 
   X-word if $70 conversion 
 Bits 16-23: 
    = $30 for Y-word source 
    = $70 for X-word source 

2. Intermediate data: 
    Sign-extended most-significant word 

2. Bit-enable mask 
 Bit=1 to use corresponding bit  from source  
word 
 Bit=0 not to use corresponding bit from  
 source word 

3. Converted data: 
 Bits 0-4:  Fractional Bits 
  Bits 5-23:  Integer Bits 

3. Filter value:  Maximum permitted change in  
 counts/servo cycle  
 

Uses 
This unshifted format is intended for very high-speed, very high-resolution applications, typically with 
parallel laser-interferometer feedback.  With the normal shifted format, the PMAC internal velocity 
registers saturate when the counts/sec * Ix08 exceed 256M (268,435,456).  With the unshifted format, this 
limit is 32 times higher: 8G (8,589,934,592). 

Using this unshifted format, be aware that PMAC will treat on LSBit of the feedback device as 1/32 of a 
count, not as a full count.  For example, if there is a sensor on motor 1 (X-axis) with 2.5 nanometer 
resolution, to program the axis in millimeters, treat one count as 80 nm (2.5*32) and make the axis 
definition #1->12500X (1,000,000 / 80). 

The conversion table entry for this would consist of a source and process word $38FFC2 (unshifted 
parallel conversion of Y:$FFC2), a mask word $00FF00 (to use only the middle eight bits of the 24-bit 
word), and a filter word value of something like $000020 (maximum speed 32 counts per servo cycle).  
Ix05 for any motor x to be slaved to this handwheel would be set to the address of the third line of this 
entry in the table.  For a 1:1 following ratio and a default Ix08 value of 96, Ix07 would be set to 12 
instead of the usual 96, to reflect that fact that each count from this accessory appears eight times bigger 
than normal. 

Shift-Right Parallel Conversion 
If both bit 19 and bit 18 of the source and process word for a parallel data conversion are set to 1, the raw 
data at the source address is shifted right three bits before being placed in the result word.  Entries of this 
form would have the conversion formats (bits 16-23 of this word) $2C, $3C, $6C, or $7C.  This 
conversion format is intended for data that is found in the high 16 bits of the 24-bit word (LSB is bit 8), as 
for feedback from a MACRO input register. 

Another use of this format is with the ACC-39 Handwheel Decoder.  This board contains an HCTL-2000 
quadrature decoder IC that converts the quadrature signal from a handwheel to an 8-bit parallel word that 
is brought in on the JPAN control panel port.  On the PMAC-PC, -Lite, and -VME, this byte appears on 
bits 8-15 of register Y:$FFC0.  A normal parallel conversion would put the 1’s bit of the handwheel 
counter at bit 13, effectively making it 256 times greater than if it were at the normal bit-5 location.  This 
shift-right conversion puts the 1's bit at bit 5, as for normal encoders. 
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When using this shift-right format, the bits enabled mask word should reflect the locations of the bits used 
after the shift.  For example, if all 16 high bits are used (bits 8 to 23), then the bits enabled mask word 
should be $1FFFC0, to mark the use of bits 5 to 20 after the shift.  With the ACC-39, which uses bits 8-
15, the mask word should be $001FC0, to mark the use of bits 5 to 12 after the shift. 

Time-Base Conversion Entries 
A time-base conversion is basically a scaled digital differentiation.  When the source data is a counter, the 
result is a frequency value.  Every servo cycle the table calculates the difference between the values of the 
source register for this cycle for the last cycle, and multiplies the difference by the scale factor.   

The most common use for the resulting value is for time-base (feedrate override) control, which makes 
the speed of PMAC execution proportional to an external frequency (usually the speed of a master device. 
Refer to the Synchronizing PMAC to External Events section of this manual for details on how this is 
used. 

Time-Base Conversion 
X-Words Y-words 

1. Last cycle's source data:  
 Bits 0-4: Fractional Bits 
 Bits 5-23:Integer Bits 

1. Source and process 
 Bits 0-15: X Address of source data (usually 
a  converted position  register). 
 Bits 16-23: = $40 for time base conversion 

2. Actual time-base value: product of scale 
 factor and difference between last two 
 source values 

2. Time-base scale factor (supplied by user) 

For example, the default conversion table creates a time-base value from the data in the Encoder 4 
counter.  It is desirable in this time-base conversion to have the source data with sub-count interpolation 
— this significantly smoothes out the process by reducing the quantization error created by digital 
differentiation.  To do this, the source register should be from the conversion table itself, not from the 
encoder counter.   

In the default conversion table, the converted data from Encoder 4 is found in X:$0723 (1827 decimal).  
Therefore, the first setup (Y) word for the time-base conversion entry is $400723 — the $40 specifies 
time-base conversion, and the $0723 specifies the source address.   

Scale Factor 
The second setup (Y) word is the scaling factor — the value that multiplies the difference between the 
current source data and the last source data.  Setting its value usually requires some computation; this 
subject is covered in the Time-Base Control section of Coordination Features of this manual. 

Converted Data 
The last source data word is stored in the first X word of the entry in the table, and the net result is stored 
in the second X word.  The value of the net result is 2 * Scale_factor * (New_source - Old_source).  To 
use this value to control the time-base of a coordinate system, enter this address as the value of Ix93 
(Time-Base Source Address) for the coordinate system. 
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Y - Register

{Scale factor}

HEX

$720

$723

$728

$729

X - Register

Interpolated Cts(n)

Interpolated Cts(n-1)

Result

DEC

1824

1827

1832

1833

$00
{1/T}

C00C
{Enc 4 counter}

$40
{Time Base}

0723
{Int. Enc. 4}

I193 = 1833

Result = 2*S.F * [Interp Cts (n) - Interp Cts (n-1)]
= 2 (217/RTIF) (25 * IF * I10/223)
= I10 * (IF/RTIF)  

Figure 11 – Conversion Table Example for Time-Base Entry 

Triggered Time-Base Conversion Entries 
For those applications where it is necessary to synchronize exactly to the position of the master encoder, 
the conversion table provides the capability to freeze the time-base while calculating the first moves of 
the synchronized sequence. Then have the time base start up referenced exactly to the master position that 
occurred when the starting trigger occurred (usually the index channel of the master encoder).  This 
provides a complete position lock of the slave to the master; there is no need for subsequent adjustment to 
make sure that they are phased in, as would be the case for normal (untriggered) time-base control. 

Entry Format 
Unlike the normal (untriggered) time-base conversion, the source address must be that of the encoder 
registers in the DSP-GATE with the raw (unprocessed) data.  The triggered time-base conversion does the 
1/T interpolation itself.  The valid addresses for triggered time-base entries are the same as those for the 
Incremental Encoder Entries: $C000 for Encoder 1, $C004 for Encoder 2, and so on, to $C03C for 
Encoder 16. 

Triggered Time-Base Conversion 
X-Words Y-Words 
1. Last cycle's source data: 
 Bits 0-4: Fractional bits 
 Bits 5-23: Integer Bits 

1. Source and process: 
     Bits 0-15: Address of source (always a set of 
 DSPGATE encoder registers) 
     Bits 16-23: 
         $90 (frozen; for preparation) 
        $B0 (armed; waiting for trigger) 
         $A0 (running; post-trigger) 

3. Actual time-base value:  When running,  
 the product of scale factor and difference 
 between last two source values. 

2. Time-base scale factor:  supplied by user; 
equal to 131,072 / real-time-input-frequency 
in cts/msec. 

Setting the Trigger State 
The process bits — bits 16 to 23 of the first Y-word in the conversion table entry — of a single triggered 
time-base entry will take on three values during the normal course of use.  This is done with an 8-bit M-
variable.  First, with the slave axes dwelling at their starting position, these process bits should be set to 
$90 in the sequence of motion program calculations for the first move.  This forces the time-base value to 
zero, putting the coordinate system in feed-hold mode.   
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Next, another program, usually a PLC program, changes the bits from $90 to $B0.  This arms the time-
base, so that it is waiting for the position-capture trigger on the source encoder, as defined by 
Encoder/Flag I-variable 2 for that encoder.  When the capture occurs, the time base starts up, with the 
captured-position register used as the initial value for the time-base difference equations.  When this 
happens, PMAC automatically changes the process bits from $B0 to $A0.  For untriggered use of this 
format, set the process bits to $A0. 

Example 
For example, if adding a triggered time-base entry working from Encoder 8 to the end of the standard 
conversion table, with a real-time input frequency of 64 cts/msec.  These entries would reside in registers 
$072A(1834) and $072B (1835).  Initially we would write to Y:$072A a value of $A0C01C (running 
time-base from Encoder 8 registers), and to Y:$072B a value of $800 (131,072 / 64 = 2048 = $800).  We 
define an M-variable to the process bits with the command M199->Y:$072A,16,8.   

With the slave axes dwelling at the start-up position, freeze the time base with the motion program 
command M199=$90.  If Ix93 is not already pointing to X register $072B, do this at this time.  The 
motion program commands immediately following this calculate the move, but with a zero time-base 
value, the move execution is stuck at the starting point.  Meanwhile, a PLC program is looking for M199 
to be equal to $90, at which time it changes it to $B0, arming for the trigger.  Since a PLC program 
cannot interrupt motion program calculations for a move, this will not be done until after the calculations 
are completed.  This change can be done with three program lines in a PLC program: 
IF (M199=$90) 
    M199=$B0 
ENDIF 

Once the trigger is armed by the PLC program, when the capture trigger occurs, PMAC starts the time 
base and changes the process bits to $A0 automatically. 

Exponential-Filter Entries 
It is possible to use the conversion table to create an exponential filter on a word of input data.  This is 
particularly useful for position following (electronic gearing), especially when the slave is geared up from 
the master; i.e., the slave moves more than one count for each count of the master, where it can 
significantly smooth the motion of the following axis. 

The equation of the exponential filter executed every servo cycle n is: 

Out(n) = Out(n-1) + (K/223)*[In(n)-Out(n-1)] 
If [Out(n) - Out(n-1)] > Max_change, Out(n) = Out(n-1) + Max_change 
If [Out(n) - Out(n-1)] < -Max_change, Out(n) = Out(n-1) - Max_change 

In, Out, and K are all signed 24-bit numbers (range -8,388,608 to 8,388,607).  The difference [In(n)-
Out(n-1)] is truncated to 24 bits to handle rollover properly.   

The time constant of the filter, in servo cycles, is 2
23

/K.  The lower the value of K, the longer the time 
constant.  No shifting action is performed.  Any operations such as 1/T interpolation should have been 
done on the data already, so the source register for this filter is typically the result register of the previous 
operation. 

The output value of the exponential filter is placed in the X register of the third line of the conversion 
table entry.  An operation that uses this value should address this third register; for example Ix05 for 
position following, or the source address for a time-base conversion-table entry (to keep position lock in 
time base, this filter must be executed before the time-base differentiation, not afterward). 
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Entry Format 
Exponential Conversion 

X-Words Y-Words 
1. Intermediate data 1. Source and process: 

 Bits 0-15:  X-address of source (usually a  
 converted position register) 
     Bits 16-23:   = $D0  

2. Intermediate data 2. Maximum permitted change in output value;  
 expressed in LSBs per servo cycle 

3. Filtered result: unshifted from source 
register data 

3. Exponential filter gain K where filter equation 
is 

Out(n) = Out(n-1) +  (K/223)*[In(n)-Out(n-1)] 

Example 
Starting with the default encoder conversion table, which occupies registers $0720 to $0729, to add a new 
entry to the table that filters the handwheel encoder that is wired into Encoder 5 on PMAC; the filter is to 
have a time constant of eight servo cycles, and the maximum velocity of the output is to be 16 counts per 
servo cycle.  

In the default table, the 1/T interpolation result for Encoder 5 is placed in register X:$0724.  This is the 
source address for the exponential filter.  Since the time constant of eight servo cycles is equal to 
8,388,608 divided by filter gain K, then K is equal to 1,048,576.  The units (LSBs) of the source register 
are 1/32 count, so the maximum change value is 32*16, or 512 LSBs per servo cycle.   

These values can be entered into the interactive menu of the PMAC Executive program (V3.0 or newer), 
or they can be entered with a direct memory-write command: 
WY:$072A,$D00724,512,1048576 

Y:$072A is the starting location of the entry in PMAC memory; $D0 specifies the exponential filter; 512 
(or $200) specifies the maximum output change rate; 1048576 (or $100000) specifies the filter gain.  If 
the filtered value were to be used as a master encoder, Ix05 would be set to $072C. 

Setting Up the Encoder Conversion Table 
The encoder conversion table starts at address $720 (1824 decimal) in the PMAC memory.  It can 
continue through address $73F (1855 decimal).  The active part of the table is ended by the first Y word 
that is all zeros.  The encoder table as shipped from the factory converts the eight incremental encoder 
registers on the base PMAC board in locations $720 through $727 (1824 to 1831).  Locations $728 and 
$729 create time base information from the converted Encoder 4 register ($723). Y:$72A is zero, ending 
the active part of the table.  
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 Default Encoder Conversion Table  

Address Y-Word Meaning 
$720 (1824) $00C000 1/T conversion of Encoder 1 
$721 (1825) $00C004 1/T conversion of Encoder 2 
$722 (1826) $00C008 1/T conversion of Encoder 3 
$723 (1827) $00C00C 1/T conversion of Encoder 4 
$724 (1828) $00C010 1/T conversion of Encoder 5 
$725 (1829) $00C014 1/T conversion of Encoder 6 
$726 (1830) $00C018 1/T conversion of Encoder 7 
$727 (1831) $00C01C 1/T conversion of Encoder 8 
$728 (1832) $400723 Time-base from converted Enc. 4 
$729 (1833) $000295 Time-base scale factor for above 
$72A (1834) $000000 Signifies end-of-table  

This table can be used unchanged by the great majority of PMAC users.  Note that the default motor 
feedback-position-address and master-position-address I-variables (I103-I105, I203-205, etc.) point to 
locations in this table, and assume the default setup of the table.   

However, there are several reasons to change the table.  First, if the application uses an ACC-24 axis 
expansion board, it will need to convert Encoders 9-16, so entries for these must be added to the table.  
Second, if using an external time-base frequency source, the scaling factor and maybe the source should 
be changed.  Third, if using 1/T interpolation on the position feedback.  Fourth, if requiring fast control 
on just a few axes, reduce the table to save computation time, because each conversion does take a finite 
amount of time. 

Example 
When using two axes of fast laser-interferometer quadrature feedback (into Encoders 1 and 3) with 
parallel sub-count interpolation, and no handwheels or external time base, set up a table as follows for 
minimum conversion time: 

Minimum Conversion Time Table 
Address Y-Word Meaning 

$720 (1824) $80C000 || sub-count conversion of Enc. 1 
$721 (1825) $80C008 || sub-count conversion of Enc. 3 
$722 (1826) $000000 Signifies end-of table  

Example 
To convert two 16-bit absolute encoders from the first ACC-14 filtered not to allow more than eight bits 
change per servo cycle, four incremental encoders (ENC1-4) with 1/T interpolation, four A/D converters 
(ADC1-4), and two linear displacement transducers (ENC9-10 timers) without filtering.   
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The conversion table setup would be: 

Two 16-Bit Absolute Encoders Conversion Table 
Address Y-Word Meaning 

$720 (1824) $00C000 1/T conversion of Encoder 1 
$721 (1825) $00C004 1/T conversion of Encoder 2 
$722 (1826) $00C008 1/T conversion of Encoder 3 
$723 (1827) $00C00C 1/T conversion of Encoder 4 
$724 (1828) $10C006 Conversion of ADC1 
$725 (1829) $10C007 Conversion of ADC2 
$726 (1830) $10C00E Conversion of ADC3 
$727 (1831) $10C00F Conversion of ADC4 
$728 (1832) $30FFD0 Filtered Parallel from 1st ACC-14 
$729 (1833) $00FFFF Use the low 16 bits of word 
$72A (1834) $000100 Max change 256 counts/cycle  
$72B (1835) $30FFD1 Filtered Parallel from 1st ACC-14 
$72C (1836) $00FFFF Use the low 16 bits of word 
$72D (1837) $000100 Max change 256 counts/cycle 
$72E (1838) $20C020 Parallel from ENC 9 timer 
$72F (1839) $07FFFF Use low 19 bits (max allowed) 
$730 (1840) $20C024 Parallel from ENC 10 timer 
$731 (1841) $07FFFF Use low 19 bits (max allowed) 
$732 (1842) $000000 Signifies end-of-table  

To use something other than the conversion table editor screen in the PMAC Executive program, view the 
current set-up of the conversion table with a single Read-Hex (RH) command.  For instance, if the table 
were set up as in the example immediately above, the command RHY:$720,24 (report in hex 24 Y-
words starting at $720) would yield the following response: 

00C000 00C004 00C008 00C00C 10C006 10C007 10C00E 10C00F 
30FFD0 00FFFF 000100 30FFD1 00FFFF 000100 20C020 07FFFF 
20C024 07FFFF 000000 000000 000000 000000 000000 000000 

To use something other than the conversion table editor screen in the PMAC Executive program, change 
the entries in the table with one or more Write (W) commands.  For example, to change the third and 
fourth entries above to straight conversion of the same registers, command WY:$722, $C0C008, 
$C0C00C.  While the set-up values may be specified in decimal, it is easier to specify them in 
hexadecimal (except possibly for scale factors). 

The set-up of the Encoder Conversion Table can be stored in EAROM with the SAVE command.  The 
most recently saved set-up is copied from EAROM into RAM (active memory) on power-up or reset, so 
SAVE changes to the table to keep them. 

Further Position Processing 
Once the position feedback signals have been processed by the Encoder Conversion Table (which 
happens at the beginning of each servo cycle), the data is ready for use by the servo loop. 

Software Position Extension 
For each activated motor, PMAC takes the position information in the 24-bit register pointed to by Ix03 
and extends it in software to a 48-bit register that holds the actual motor position.  In the process of 
extension, it multiplies the value by the Ix08 position scale factor.  Since the register in the conversion 
table is in units of 1/32 of a count, the actual motor position register is in units of 1/(Ix08*32) of a count. 
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These extended motor position registers are set to zero on power-up/reset (unless there is an absolute 
position sensor), and again at the end of a homing search move.  The encoder position registers are only 
set to zero on power-up/reset.  Therefore, after a motor is homed, there is an offset between motor zero 
position and encoder zero position.   

Only worry about this offset if using the encoder registers directly (e.g., position capture and compare) or 
to relate these values to motor position.  Find and store the offset, which is the value in the position 
capture register when the home trigger is found.   

Program HOMOFFST.PMC in the Examples section shows how to do this.  They may also have to 
handle rollover of the encoder registers if they will be traveling more than +/-8 million counts.  The 
modulo (%) operator is useful for this.  For more details, refer to the Synchronizing PMAC to External 
Events section of this manual.  
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Figure 12 PMAC Position Processing 

Axis Position Scaling 
Motor position is always kept in terms of counts.  When a motor is assigned to an axis through an Axis 
Definition statement, the scale factor in the statement determines what the units of the axis are (usually 
inches, millimeters, degrees, etc.).  Programmed moves are given for an axis, and PMAC converts this to 
motor moves, using the scale factors from the Axis Definition statements.  It is important to realize that 
this conversion is for commanded positions only, and that the conversion normally goes only one way: 
from axis to motor.  PMAC never computes actual axis positions.   

Leadscrew Compensation 
PMAC is capable of performing what is commonly called leadscrew compensation.  This technique, 
which also goes by other names, allows for a table of corrections to be entered into PMAC as a function 
of motor position.  PMAC can store up to eight of these compensation tables.   

Each motor can have one table that belongs to it.  Unless otherwise specified, the table uses position 
information from this motor (source data) to determine the location in the table, and also adds its 
correction to this motor (target data).  However, either the source motor, or both the source and the target 
motors, may be specified to be motors other than the motor to which the table belongs.  (If both motors 
are different, the concept of the table belonging to a motor is useful only for PMAC’s bookkeeping 
purposes.) 



PMAC User Manual 

Setting Up a Motor 7-29 

The compensation is performed inside the servo loop (every servo cycle) to obtain the maximum speed 
and accuracy.  PMAC takes the position of the source motor and finds the matching position in the table.  
Typically this is between two entries in the table, so PMAC linearly interpolates between these two 
entries to obtain the correction for the current servo cycle.  It then adds this correction to the position of 
the target motor.  The entries of corrections in the table must be integer values, with units of 1/16 count 
(so an entry of 48 represents three counts) of the target motor.   

Multiple Tables Per Motor 
A motor may provide the source data for up to eight compensation tables; it may also be the target of up 
to eight motors. 

Table Range 
The compensation is defined directly for a range of source motor positions starting at zero counts (the 
most recent home or power-up/reset position) and going in the positive direction.  The size of this range is 
declared as the last argument of the DEFINE COMP command.  This argument has units of counts of the 
source motor.  The spacing between entries is the total range divided by the number of entries (which is 
the first argument of the DEFINE COMP command).  The first entry in the table defines the correction at 
one spacing from the zero position of the source motor, the second entry at two spacings, and so on. 

Rollover 
Outside of this range, the uncorrected position is rolled over to within this range — essentially a modulo 
(remainder) operation — before the compensation is done.  This permits compensation of rotary axes over 
several revolutions, and simple compensation for encoder eccentricity.  Of course, if the table is made big 
enough to cover the entire source motor travel, the rollover feature will never be used. 

If the motor has a travel range to the negative side of zero, and compensation is desired here, these entries 
should be made as if they were past the positive end of the motor range.  For instance, if the motor travel 
were +/- 50,000 counts and a table entry was to be made every 500 counts (so 200 entries total), the table 
would be set up with a DEFINE COMP 200,100000 command.   

The first 100 entries would cover the 500 to +50,000 count range, and the last 100 entries would cover the 
-50,000 to 0 count range.  (Usually the table is referenced so there is a zero correction at the source motor 
zero position, so the last entry in the table should be 0.)  Essentially, the -50,000 to 0 range would be 
mapped into the +50,000 to +100,000 range. 

Example 
If the following simple table were entered: 
#1  
DEFINE COMP 8,4000   ; Table of 8 entries over 4000 cts; 
 ; belonging to motor 1; 
 ; Uses motor 1 for source & target because  
 ; no other motors specified 
-160 ; Correction at 4000/8 (500) cts is -160/16  
 ; = -10 cts 
80 ; Correction at 1000 counts is 5 counts 
120 ; Correction at 1500 counts is 7.5 counts 
96    ; Correction at 2000 counts is 6 counts 
20 ; Correction at 2500 counts is 1.25 counts 
-56 ; Correction at 3000 counts is -4.5 counts 
-12 ; Correction at 3500 counts is -0.75 cts 
0 ; Correction at 4000 (and 0) cts is zero 
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and the axis definition were #1->1000X, a commanded move to X1.3 would give an uncorrected motor 
position of 1300 counts.  The applied correction would be linearly interpolated from the table: 

( ) counts5.65
500

10001300*55.7Correction +=+
−

−=  

At X8.4, PMAC would calculate an uncorrected motor position of 8400 counts; roll this over to within 
the table range: 8400 mod 4000 = 400 counts; and the correction from the table would be: 

( ) counts80
500

0400*010Correction −=+
−

−−=  

Enabling and Disabling 
All leadscrew compensation tables are enabled when I51 is set to 1. When I51 is set to 0, all are disabled. 

Uses of Cross-Axis Compensation 
The ability to have separate source and target motors for a table has several uses.  The first is the 
traditional compensation for imperfect geometry, as in a bowed leadscrew.  For instance, on an XY table, 
if the X-axis leadscrew is bowed, the Y-axis position should receive a correction as a function of X-axis 
position.  If motor #1 is the X-axis, and motor #2 is the Y-axis, the table holding this correction would 
have motor #1 as the source motor, and motor #2 as the target motor. 

A second use for cross-axis compensation is what is often known as the electronic cam.  In this case, the 
entire movement of the target motor is caused by the entries in the compensation table, not just the 
corrections.  This method of implementing electronic cam operation has two significant advantages over 
The PMAC time-base following, the other method of creating electronic cams: the compensation table is 
bidirectional — the master can turn in either direction — and it is absolute, so the phasing in is simply a 
matter of homing the axes.   

The time-base method, in which the motion program of the slave motor(s) defines the motion, retains the 
advantage of being able to change on the fly through math and logic in the program, and of second or 
third-order interpolation between points, rather than the compensation table’s first-order interpolation. 

Two-Dimensional Leadscrew Compensation 
It is possible to set up two-dimensional compensation tables on PMAC, where the compensation is a 
function of the position of two motors.  This makes it possible to set up planar compensation functions by 
specifying a grid of compensation points.  A 2D compensation table has two source motors and one target 
motor.  The target motor can be one of the source motors. 

If the size parameter in the DEFINE COMP command that establishes the compensation table has a 
decimal point, it is a 2D table, and the value before the decimal point specifies the number of columns, or 
points for the first source motor; the value after the decimal point specifies the number of rows, or points 
for the second source motor. 

In operation, PMAC computes the compensation for a given location in the plane of the two source 
motors as the weighted average of the four specified compensation values surrounding that location. 

Refer to the description of the 2D DEFINE COMP command in the PMAC & PMAC2 Software 
Reference Manual, 3A0-602705-363, for details. 
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DEFINE COMP   20.  15,  #1,  #2,  #3,  20000.  15000
Table columns
Table rows
1st source motor
2nd source motor
Target motor
1st motor span in counts
2nd motor span in counts
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Figure 13 PMAC Compensation Tables 
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Backlash Compensation 
PMAC can perform sophisticated backlash compensation for all motors.  On reversal of the direction of 
the commanded velocity, a pre-programmed backlash distance is added to or subtracted from the 
commanded position.  This backlash distance can be constant over the travel of the motor, or it can be a 
function of motor position.  The rate at which the backlash is introduced or removed is programmable, as 
is the magnitude of the reversal required for backlash to be introduced or removed. 

Constant Backlash 
Ix86 for motor x is the constant backlash distance parameter.  When the direction of the motor’s 
commanded movement changes from positive to negative, this value is introduced into the active 
backlash compensation register, which is subtracted from the nominal commanded position.  When the 
direction of the motor’s commanded movement changes from negative to positive, the value of the 
backlash compensation register is reduced to zero.   

Note  

A positive value of Ix86 adds extra distance to the travel of the motor on reversal, 
which is what is desired to compensate for true physical backlash.  The units of 
Ix86 are 1/16 of a count, so the value should be 16 times the number of counts of 
backlash compensation required. 

Backlash Take-Up Rate 
Ix85 controls the rate at which backlash is introduced or removed upon reversal for motor x.  This helps 
to optimize for swift but smooth backlash compensation.  When reversal is detected, each background 
cycle (between each scan of each PLC) an amount equal to Ix85 is added to or subtracted from the active 
backlash compensation register, as appropriate, until a value Ix86 or 0 in that register is reached.  In 
general, the highest value of Ix85 that produces smooth transitions should be used. 

Backlash Hysteresis 
I99 controls for all motors on PMAC the number of counts in the new direction of the commanded 
position that must be seen before PMAC determines that a reversal has occurred and the backlash must be 
changed.  As such, it acts as a hysteresis term.  It is particularly important if a master encoder is used to 
drive the motor, so slight dithering in the master encoder does not cause repeated introduction and 
removal of backlash.  I99 has units of 1/16 count, so the default value of 64 provides a 4-count hysteresis. 

Backlash Tables 
A backlash compensation table created with the DEFINE BLCOMP command can be used to create 
backlash distances that vary with the position of the motor.  Most often this is used in conjunction with a 
leadscrew compensation table to create the effect of a bi-directional leadscrew compensation table. 

The value of backlash distance for a given motor position derived from the backlash table is added onto 
the Ix86 constant backlash parameter.  The backlash distance from the table at motor position 0 (home 
position) is zero by definition, so if a backlash table is used, Ix86 should contain the amount of backlash 
at the home position.  The table then should hold the differences from this amount. 

Note 

Typically, while the range and spacing of a backlash table will be the same as for 
the leadscrew compensation table for the same motor, this is not required.  Even 
the presence of a leadscrew compensation table for a motor is not required to have 
a backlash table for that motor. 
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The backlash table for a motor is only active if the most recent commanded direction of movement is 
negative; it is still active if the motor is currently commanded to stand still but reached this position by 
traveling in the negative direction.  In operation, the table reads the present nominal motor position and 
computes a weighted average of the two closest table entries, creating a first-order interpolation between 
table points. 

The backlash compensation is defined directly for a range of motor position starting a zero counts and 
going in the position direction to the count length declared by the last argument in the DEFINE BLCOMP 
command.  The spacing between entries is this length divided by the number of entries (which is the first 
argument in the command).  The first entry in the table defines the correction at on spacing from the zero 
position of the motor, the second entry at two spacings, and so on. 

Outside this range, the uncorrected position is rolled over to within this range before the compensation is 
done.  This rollover occurs exactly as for leadscrew compensation tables.  

The constant backlash parameter Ix86 is always (potentially) active.  Backlash tables are (potentially) 
active if I51 is set to 1; they are inactive if I51 is set to 0. 

Example 
Imagine the calibration of an axis was performed against an accurate linear measurement device on the 
load, working in both directions, and the following readings of the linear device for set positions of the 
motor encoder (expressed in units of the motor encoder): 

Motor Pos.  (cts) 0 500 1000 1500 2000 2500 3000 3500 
Load Pos.+ (cts) 0* 510 995 1492.5 1994 2497.5 3003.5 3500.5
Load Pos.- (cts) 5 516 998.5 1494 2000 2501 3010.5 3508.5
*  Reference point; zero by definition 

Only the compensation table works in the positive direction, so the entries in the compensation table 
should be the negative of the difference between positive-going load position and motor position, 
expressed in 1/16 counts: 

Motor Pos.  (cts) 0 500 1000 1500 2000 2500 3000 3500 
Load - Motor (cts) 0* +10 -5 -7.5 -6 -2.5 +3.5 +0.5 
Motor - Load (1/16 cts) 0* -160 +80 +120 +96 +40 -56 -8 
* Reference point; zero by definition 

The compensation table definition to create these corrections would be: 

DEFINE COMP 8,4000 
-160 80 120 96 40 -56 -8 0 

Notice that the first entry is for the correction at 500 counts, and the added last entry is 0, for the 
correction at 4000 counts and 0 counts. 

There is a 5-count backlash at motor position 0, so Ix86 should be set to 5*16, or 80. 

The backlash table should contain the differences between negative-going load position and positive-
going load position, minus Ix86: 

Motor Pos.  (cts) 0 500 1000 1500 2000 2500 3000 3500 
Load(-) - Load(+) (cts) 5 6 3.5 1.5 6 3.5 7 8 
Load(-) - Load(+)-Ix86 (cts) 0* 1 -1.5 -3.5 1 -1.5 2 3 
Load(-) - Load(+)-Ix86 (1/16 cts) 0* 16 -24 -56 16 -24 32 48 
* Reference point; zero by definition 
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The backlash table definition to create these corrections would be: 

DEFINE BLCOMP 8,4000 
16 -24 -56 16 -24 32 48 0 

Notice that the first entry is for the correction at 500 counts, and the added last entry is 0, for the 
correction at 4000 counts and 0 counts. 

Torque Compensation Tables 
PMAC provides the capability to create a table of corrections as a function of motor position to the output 
of the servo loop.  Typically, this feature will be used with the servo loop in torque mode (whether or not 
PMAC is also performing motor commutation), so this function is called torque compensation table. 

The torque compensation tables are entered and operated much like the leadscrew compensation tables, 
which provide a position correction.  However, there are no cross-axis or multi-axis torque compensation 
tables.  The table belonging to a motor provides a torque correction to that motor as a function of that 
motor’s position. 

The torque compensation table for a motor is declared with the on-line command DEFINE 
TCOMP{entries}, {count length} for the addressed motor.  {entries} defines the number 
of points in the table, and {count length} defines the span of the table in counts of the motor.  The 
spacing between entries in the table is therefore {count length} / {entries}.  The first entry 
in the table defines the correction at one spacing from the zero position of the motor, the second entry at 
two spacings, and so on.  The correction at motor zero position is zero by definition. 

The correction is defined directly for the range of motor positions 0 to {count length}.  For motor 
positions outside this range, the position is rolled over to within this range before the correction is 
applied.  In this way, cyclic disturbances such as motor cogging torque can be compensated for.  The 
correction at the end of the table is equivalent to the correction at zero position; because the correction at 
zero position is zero by definition, the last entry of any table intended to be rolled over should be zero 
also. 

After the table definition command, the next {entries} constants sent to PMAC are put into the table 
as table entries.  The units of the entries in the table are the units of a 16-bit DAC, with range -32,768 to 
+32,767, even if an output device of a different resolution is used.  Corrections at points in between 
entries of the table are linearly interpolated from the adjacent values in the table. 

If the following table were entered: 
#1  
DEFINE TCOMP 8, 2000 ;Table of 8 entries over 2000 counts for 

;motor 1 
125     ;correction at 2000/8=250 counts is 125 DAC 

;bits 
-50    ;Correction at 500 counts is -50 DAC bits 
83    ;Correction at 750 counts is 83 DAC bits 
-97    ;Correction at 1000 counts is -97 DAC bits 
60    ;Correction at 1250 counts is 60 DAC bits 
-43    ;Correction at 1500 counts is -43 DAC bits 
129    ;Correction at 1750 counts is 129 DAC bit 
0    ;Correction at 2000 counts (and 0) is 0 DAC  

;bits 
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the correction applied at 600 counts would be: 

[ ]( ) 35083
500750
50060050Correction =−−
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SETTING UP PMAC COMMUTATION 
Introduction 
This section explains how to set up the commutation scheme if PMAC is performing the commutation for 
a motor.  If not using PMAC to perform the commutation on any of the motors, skip this section.  Simply 
make sure that Ix01 is set to zero for all of the activated motors, so PMAC will not try to commutate 
them. 

If using PMAC to commutate a motor, tell PMAC how to perform the commutation.  This is done by 
proper setup of I-variables to Ix83 for the motor.  This section explains how to set these variables.  Once 
this setup is done the commutation operation proceeds automatically and invisibly. 

PMAC has sophisticated on-board commutation features for DC brushless, variable (switched) reluctance, 
AC induction, and stepper motors.  These algorithms allow PMAC to drive the phases of the motor 
directly, requiring only simple current-loop bridges for the amplifier.  As its commutation feedback 
device, PMAC can utilize the same feedback device that is used for servo position feedback (an encoder 
or resolver).   

Incremental Encoder Feedback Requirement 
The ongoing commutation position information for a motor must come through an incremental encoder 
counter.  If the commutation feedback device is an absolute encoder or resolver the power-up information 
can be received straight from the device, but an incremental signal must be derived from the absolute 
position information for the ongoing commutation.  The PMAC ACC-8D Option 7 resolver-to-digital 
converter board does this automatically for resolvers, and Option 6 on an ACC-14 does this for absolute 
encoders. 

Specify the address of the register holding the ongoing commutation position feedback information with 
Ix83.  Usually (except for PMAC microstepping), this is the phase position register for an encoder in the 
DSPGATE (addresses X:$C001, X:$C005, X:$C009, etc.). 

Phase Referencing 
When commutating a synchronous motor — permanent magnet brushless or switched reluctance — it is 
necessary to reference the phasing cycle to physical features of the motor.  Contrary to much that is 
written, this does not require an absolute sensor.  An incremental sensor can be used if a reliable phasing 
search can be performed on power-up.  PMAC is capable of performing such a phasing search.  If an 
absolute sensor is used, the phase referencing is performed only once on assembly of the system.  Both 
methods of phase referencing are covered in this section. 

Two-Analog-Output Requirement 
If PMAC is commutating a motor, two analog output channels are required per motor; the third — and 
fourth, if necessary — phases are generated by balance loops in the amplifier.  (Remember that if a 
multiphase motor is commutated inside the amplifier, only one PMAC analog output is required.)   

As mentioned previously in the Selecting the Output(s), for a PMAC-commutated motor, specify the 
lower address of the pair of adjacent DAC registers that will be used to output the phase commands with 
Ix02.  The legitimate values of Ix02 are $C002 (DAC 1 and 2), $C00A (DAC 3 and 4), $C012 (DAC 5 
and 6), $C01A (DAC7 and 8), $C022 (DAC 9 and 10), $C02A (DAC 11 and 12), $C032 (DAC 13 and 
14), and $C03A (DAC 15 and 16). 
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Figure 15 PMAC Commutation 

Basic Parameter Specification 
Regardless of the type of motor PMAC is commutating, several parameters need to be specified for the 
commutation.  Commutation parameters for motor x begin at Ix70.  The commutation parameters are only 
used if Ix01=1. 

Counts per Commutation Cycle 
First to be specified is the number of counts per commutation cycle (or electrical cycle, or pole-pair), 
using motor I-variables Ix70 and Ix71, where Ix71/Ix70 is the number of counts per cycle.  Ix71 and Ix70 
must both be integers.  These are encoder counts after the decoding, so if x4 decode is used, there are four 
counts per encoder cycle. Usually Ix70 is 1, except for a few special cases like 6-pole motors, where there 
is likely not to be an integer number of counts per single pole pair.   

Angle Between Phases 
The proper angular offset between phases, which is different for three- and four-phase motors, is set by 
Ix72.  This parameter also permits reversal of the phasing, so that motor leads do not have to be flipped if 
the phasing was wrong in assembly.  The units of Ix72 are 1/256 of a commutation cycle, so for a three-
phase motor, the possible values are 85 (1/3 of 256) or 171 (2/3 of 256).  For a four-phase motor, the 
possible values are 64 (1/4 of 256) or 192 (3/4 of 256).  Changing Ix72 between the two values for a 
given number of phases has the same effect as exchanging two of the motor leads.  Tests for the proper 
setting within each pair of values are given below. 
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Permanent Magnet Brushless Motor Commutation 
When commutating a permanent magnet brushless motor (often called a DC brushless motor, sometimes 
called an AC synchronous motor), very little beyond the basic commutation cycle parameters noted above 
must be specified. 

Getting the Polarity Right 
For proper commutation, it is required that the feedback polarity, as determined by the encoder wiring and 
the Encoder Decode I-variable (I900, I905, etc.) match the output polarity, as determined by the amplifier 
and motor wiring, and by Ix72.  That is, when PMAC issues a positive command through its commutated 
outputs, it must cause the encoder counter to count up.  If the polarity is mismatched on a permanent-
magnet brushless motor, the motor will lock in quickly and refuse to move. 

Testing the Polarity 
A quick test early in the setup of the motor can verify whether the polarity is correct.  The test uses the 
output offset variable Ix29 and Ix79 to force current directly into the particular phases and drive the motor 
like a stepper motor.  Observing the direction the motor position counts as different phases are driven, we 
can tell whether the polarity is correct, given the present encoder wiring and decode variable, and the 
present motor wiring and output phasing variable. 

This test, which can be done easily from the terminal window of the Executive program by typing in a 
few simple commands, is best illustrated by an example, which will use Motor 1: 
#1O0 ; Command zero output 
I129=2000 ; Positive offset of 2000 bits on 1st phase 
P ; Request position (after motor settles) 
382 ; PMAC responds with position 
I179=2000 ; Positive offset of 2000 bits on 2nd phase 
P ; Request position (after motor settles) 
215 ; PMAC responds with position 

Polarity Rule 
With I172 equal to 64 or 85, the motor should have moved in the negative direction when the second-
phase positive offset was added on top of the first-phase positive offset (as it did in this example).  With 
I172 equal to 171 or 192, the motor should have moved in the positive direction.  Alternatively stated, if 
the motor counted down in the test, I172 should be set at 64 or 85; if it counted up in the test, I172 should 
be set at 171 or 192.   

For the motor in this example, we conclude that we want a value of 64 if it is a 4-phase motor or 85 if it is 
a 3-phase motor.  If the encoder direction is changed for system reasons, I172 should be changed as well, 
to match. 

Power-on Phasing Search 
Warning 

An unreliable phasing search method can lead to a runaway condition.  Test the 
phasing search method carefully to make sure it works properly under all 
conceivable conditions.  Make sure the Ix11 fatal following error limit is active 
and as tight as possible so the motor will be killed quickly in the event of a serious 
phasing search error 

If a non-absolute sensor is used for commutation, PMAC must perform a search move for the proper 
phasing reference every time it powers up (with an absolute sensor, this only needs to be done once in the 
development of the system).  There are several ways to do this phasing search. PMAC has two automatic 
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methods executed by firmware; other methods or enhancements of these methods can be executed with 
PLC programs. 

A power-on phasing search permits commutation of permanent-magnet brushless motors without the need 
for a more expensive and possibly less accurate absolute sensor.  However, a phasing search may not be 
dependable in some applications; in these cases an absolute sensor will be required. 

Two-Guess Phasing Search 
The PMAC first automatic phasing search method is called the two-guess phasing search, because it 
makes two arbitrary guesses as to the phase position, briefly applies a torque command using each guess, 
and observes the response of the motor to each command.  Based on the magnitude and direction of the 
two responses, PMAC calculates the two responses and the proper phasing reference point.  It then starts 
the commutation based on this reference, and closes the servo loop to hold position. 

The two-guess phasing search is very quick and requires little movement.  It works well provided that 
external loads such as gravity and friction are low.  However, if there are significant external loads, it may 
not prove to be a reliable phasing search method (and unreliable phasing search methods can be 
dangerous); if this is the case, another method such as the stepper-motor method described below should 
be used. 

The two-guess method is selected by setting Ix80 to 0 or 1.  With Ix80 at 0, the phasing search is not 
executed automatically during the power-on/ reset cycle; a $ command must be used to execute the 
phasing search.  With Ix80 at 1, the phasing search will automatically be executed during the power-on 
reset cycle; it can also be subsequently executed with a $ command. 

Two parameters must be specified to tell PMAC how to do this phasing search.  Ix73 specifies the 
magnitude of the torque command during each guess, with units of 16-bit DAC bits.  Typical values are 
2000 to 6000; 4000 (about 1/8 of full range) is a usual starting point.  Ix74 sets the duration of each 
torque command and the evaluation of its response, with units of servo cycles.  Typical values are 3 to 10; 
5 (about 2 msec at the default servo update) is a usual starting point. 

Stepper-Motor Phasing Search 
The other automatic method of phasing search for a synchronous motor is the stepper-motor method.  
This method forces current through particular phases of the motor, as a stepper-motor controller would, 
and waits for it to settle.  With proper operation, this will be at a known position in the commutation 
cycle. 

The stepper-motor phasing search requires more movement and more time than the two-guess method, 
but it is more reliable in finding the phase accurately in the presence of large external loads. 

The stepper-motor method is selected by setting Ix80 to 2 or 3.  With Ix80 at 2, the phasing search is not 
executed automatically during the power-on/reset cycle; a $ command must be used to execute the 
phasing search.  With Ix80 at 3, the phasing search automatically executes during the power-on reset 
cycle (this is not recommended); it can also be subsequently executed with a $ command. 

In this method, Ix73 controls the magnitude of the current through the phases, with 32,767 representing 
full range.  Typically a value near 3000, about 1/10 of full range, will be used, although the actual value 
will depend on the loads. 

Ix74 controls the settling time for each of the two steps used in the search.  In this mode, the units of Ix74 
are servo cycles*256, about 1/10 sec with the default servo cycle time.  Typically a settling time of 1-2 
seconds is used. 

In the stepper-motor phasing search, PMAC first forces current to put the motor at the +/-60o point in the 
phasing cycle and waits for the settling time.  Then it forces current to put the motor at the 0o point in the 
phasing cycle and again waits for the settling time.  It checks to see that there has been at least 1/16 cycle 
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(22.5o) movement between the two steps.  If there has been, it forces the phase position register to 0, 
clears the phasing-search-error motor status bit, and closes the servo loop.  If it has detected less 
movement than this, it sets the phasing-search-error bit, and disables (kills) the servo loop. 

If the stepper motor phasing search is done outside the power-on/reset cycle, the phasing search algorithm 
will also fail if an amplifier fault or overtravel limit condition is detected.  PMAC will set the phasing-
search-error bit and disable the servo loop.  If done inside the power-on/reset cycle, PMAC cannot 
automatically detect these errors; the search will likely fail due to lack of movement. 

Custom Phasing Search Methods 
It may be necessary or desirable to write a custom phasing-search algorithm.  Usually these are executed 
as PMAC PLC programs, but often they can be tried and debugged using on-line commands.  The on-line 
commands are useful particularly if the phasing search is done only in development to establish a 
reference for an absolute sensor. 

Most custom algorithms are variations on the stepper-motor phasing search method.  They use the phase-
current offset values Ix29 and Ix79 with an O0 command to force current into particular phases so the 
motor will lock at a certain physical position in its phasing cycle.  The following table shows the positions 
in the phasing cycle created by different combinations of Ix29 and Ix79 for 3-phase motors.  Usually the 
magnitude of the non-zero values are 2000 to 3000: 

Ix29 =0 <0 <0 =0 >0 >0 
Ix79 >0 >0 =0 <0 <0 =0 
Pos(Ix72=85)  0oe 60oe 120oe +180oe -120oe -60oe 
Pos(Ix72=171)  +180oe -120oe -60oe 0oe 60oe 120oe 

For example, the following set of on-line commands typed into the terminal window of the PMAC 
Executive program could be used to force a motor to the zero position in its phasing cycle, set the phase 
position register as zero, and enable the motor. 
#1O0 ; Enable the motor with open-loop zero magnitude 
I129=0 ; No offset on Phase A 
I179=3000 ; Positive offset on Phase B to force to 0 deg  
 ; (Ix72=85) 
M171=0 ; Write zero into phase position register 
I179=0 ; No offset on Phase B 
J/ ; Close servo loop 

The time between typing the commands would provide sufficient delay for settling into position. 

The following PLC program is a good starting point for variants on the stepper-motor phasing search 
method.  Extensions to this program could be to phase two gantry motors simultaneously or to “step” out 
of a position limit.  This example uses Ix73 and Ix74 as they would be used in the automatic stepper-
motor phasing search method. 
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;****************** Set-up and Definitions ******************** 
CLOSE    ; Make sure all buffers are closed 
M70->X:$0700,0,24,S ; 24-bit automatic timer register 
M271->X:$007D,0,24,S ; Motor 2 phase position register 
;****************** Program to do phasing search ************** 

OPEN PLC 1 CLEAR 
CMD”#2O0”   ; Force zero-magnitude open-loop 
P229=I229   ; Save real Phase A bias 
P279=I279   ; Save real Phase B bias 
IF (I272<128)  
  I229=-I273  ; Force negative bias into A 
  I279=I273  ; Force positive bias into B 
ELSE ; Ix72>128 
  I229=I273  ; Force positive bias into A 
  I279=-I273  ; Force negative bias into B 
ENDIF    ; This should force to 60 deg 
M70=I274*256  ; Starting value for countdown timer 
WHILE (M70>0)  ; Wait for prescribed time 
ENDWHILE 
I229=P229   ; Restore real bias to A for 0 deg 
M70=I274*256  ; Starting value for countdown timer 
WHILE (M70>0)  ; Wait for prescribed time 
ENDWHILE 
M271=0   ; Set phase position to zero 
I279=P279   ; Restore real bias to B 
CMD “#2J/”   ; Close servo loop 
DISABLE PLC 1  ; Keep from executing again 
CLOSE 

Phasing Referenced to Absolute Sensor 
With a position sensor that is absolute over at least one commutation cycle of the motor, it is possible to 
set the proper phase of the motor on power-up/reset without having to perform a phasing search.  Instead, 
the absolute sensor is read to determine the location of the motor within its phasing cycle.  With this 
procedure, the phasing reference only needs to be done once, during the initial development of the 
system.  Remember that this reading of absolute position is only done at motor reset time; the ongoing 
phase position is always read through an encoder counter. 

I-Variables 
Two I-variables need to be set up properly to perform phasing from an absolute sensor.  Ix81 tells PMAC 
the address and format of the absolute sensor.  If this parameter is greater than zero, PMAC will read 
from the specified address in the specified format on power-up/reset to get the absolute position.  Ix75 
specifies the difference between the sensor's zero position and the phase cycle's zero position, in units of 
(counts * Ix70).  After reading the power-up/reset position from the absolute sensor, PMAC adds this 
value and writes the resulting sum to the phase position register. 

Set-up Phasing Search 
To set up for the absolute phasing, first do a phasing search on the motor not utilizing the absolute power-
on position.  All of the directions for setting up the commutation with an incremental sensor apply here.  
These tasks should be done with an unloaded motor for maximum accuracy.  Assure that a phasing search 
on the motor can be done consistently using the stepper motor method implemented in the PLC program 
shown in this manual, and the motor can be turned in both directions with small open-loop commands 
(e.g., O5, O-5).  This phasing search can also be done with four on-line commands, as shown below. 
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Once confident that the commutation algorithms with the stepper-motor phasing search are working well, 
determine the phasing offset required for phasing with the absolute sensor.  First, define an M-variable to 
read the absolute sensor.  For a resolver read through the ACC-8D Option 7 R/D converter board, this is a 
TWR form of M-variable.  For a sensor such as an absolute encoder read as parallel bits, usually through 
an ACC-14 I/O board, this is a Y form of M-variable.  For example: 
M171->TWR:0,2 ;Resolver at multiplexer address 0, location 
 ;2 at that address on an ACC-8D Opt 7 board 
M171->Y:$FFD0,0,16,U ;16-bit parallel absolute sensor at first   

 ;ACC-14 Port A  

Next, manually run the stepper motor phasing search, using on-line commands.  The point of this 
sequence is to force the motor into the zero-point of the phasing cycle.  At this point, read the absolute 
sensor using the M-variable we have defined.  Use Motor 1 for the example.  The exact sequence depends 
on the phase angle value in Ix72. 

For I172 = 64 (4-phase) or 85 (3-phase): 
#1O0 ;Open-loop command of zero magnitude 
I129=-2000 I179=2000 ;Force motor to preliminary position 
I129=0 ;Now force motor to zero-point of phase cycle 
 ;Ix29 can be set to non-zero value here if 
 ;the current-loop bias has been evaluated, 
 ;in which case Ix29 is set to the value that 
  ;forces zero current through the phase. 

For I172 = 192 (4-phase) or 171 (3-phase): 
#1O0 ; Open-loop command of zero magnitude 
I129=2000 I179=-2000 ; Force motor to preliminary position  
I129=0 ; Now force motor to zero-point of phase cycle 
 ; See note above on phase current bias 

At this point, read the absolute position sensor by querying the M-variable value.  For example: 
M171 ; Ask for value of M171 
475 ; PMAC responds 

Take the value PMAC returns, negate it, multiply it by Ix70, and put the resulting value in Ix75.  
Continuing our example, if I170=1, issue the command: 
I175=-475 

If I170=2, issue the command: 
I175=-950 
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Final Preparations 
To finish the preparation for the absolute phasing read, a few more things must be done. Remove the 
remaining phase offset by setting Ix79 back to 0; prevent any phasing-search move by setting Ix73 and 
Ix74 to 0, and/or removing the phasing-search PLC program; define the address for the absolute phase 
position read by setting Ix81; and decide whether to enable the motor immediately on power-up/reset by 
setting Ix80.  To continue the example: 
I179=0 ; Remove phase bias (or set to bias for zero  
 ; current) 
I173=0 ; Disable phasing search 
I174=0 ; Disable phasing search 
I180=1 ; Enable motor immediately on power-up reset 
I181=$020100 ; Read R/D at location 2 ($02) of multiplexer  
 ; address 0  
 ; ($0100) for initial phase position or 
I181=$10FFD0 ; Read 16 bits ($10) of parallel data from  
 ; Port A  
 ; of 1st ACC-14 ($FFD0) for initial phase  
 ; position  

Trying Absolute Phasing 
Now try the setup by issuing the $ motor-reset command.  If the phasing works well, the motor should 
move easily in both directions with small open-loop commands.  If the servo loop has been tuned 
reasonably, the motor can now job in both directions as well, but poor jogging performance could be due 
to a poorly tuned servo loop, especially if the open-loop commands work well. 

Saving Values 
Once confirmed that the proper phasing can be reached with the $ command, save the parameters into 
permanent memory with the SAVE command and do a full card reset with the $$$ command.  If Ix80 
was saved as 1, the motor should be enabled and in closed-loop position control immediately after the 
reset, although if the servo loop has not been tuned, it may not be very stiff.  Regardless good response 
should be received from open-loop commands.   

If Ix80 was saved as 0, the absolute phase position will have been done during the reset, but the motor 
will be left in the disabled (killed) state.  It can be enabled with either open loop or jog commands.  A $ 
command will also enable the motor (closed-loop), doing another absolute position read in the process. 

If the motor performs open-loop commands well in both directions at this point, the commutation setup is 
finished, and the motor is ready for servo-loop tuning. 

Phasing Referenced to Hall-Effect Sensor 
PMAC can use hall-effect commutation sensors or their equivalent for an approximate phase referencing 
on power-up.  This phase referencing is good to +/-30o of the commutation cycle, which is enough to get 
reasonable torque and reasonable smoothness without any phasing search.  The final phase reference can 
then be done when the index pulse is found.  Usually the index pulse is part of the home position trigger, 
so after the homing search move is done, the phase position is adjusted based on a measurement that was 
done during development. 

Setting bit 23 of Ix81 to 1 specifies a hall-effect power-on phase reference.  In this case, the address 
portion of Ix81 specifies a PMAC X-address, usually that of an otherwise unused flag register matching 
the second DAC output for the motor.  For example, a motor using DACs 1 & 2 for the commutated 
outputs would use Flags 1 at X:$C000 for its main flags and Flags 2 at X:$C004 for its hall-effect inputs. 
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PMAC expects to find the hall-effect inputs at bits 20, 21, and 22 of the specified register.  In a flag 
register, these bits match the HMFLn, -LIMn, and +LIMn inputs, respectively.  Traditionally hall-effect 
inputs are labeled U, V, and W.  The U input is bit 22 (+LIMn), V is bit 21 (-LIMn), and W is bit 20 
(HMFLn). 

The hall-effect signals must each have a duty cycle of 50% (180oe).  PMAC can use hall-effect 
commutation sensors separated by120oe.  There is no industry standard with hall-effect sensors as to 
direction sense or zero reference, so this must be handled with software settings of Ix81. 

Bit 22 controls the direction sense of hall-effect sensors as shown in the following diagram, where a value 
of 0 for bit 22 is standard and a value of 1 is reversed: 

U

V

W

-30 30 90 -150 -90

1

0
1

0
1

0

30 -30 -90 90150
Standard:
Reversed:

1 3 2

150
-150

6 4 5

 
Figure 16 Hall Effect Waveform Diagram 

Hall Diagram 
This diagram shows the hall-effect waveforms with zero offset, defined such that the V-signal transition 
when the U-signal is low (defined as the zero point in the hall-effect cycle) represents the zero point in the 
PMAC commutation cycle.   

If the hall-effect sensors do not have this orientation, bits 16 to 21 of Ix81 can be used to specify the 
offset between The PMAC zero point and the hall effect zero point.  These bits can take a value of 0 to 63 
with units of 1/64 of a commutation cycle (5.625oe).  The offset can be computed by doing a phasing 
search move to establish a phase reference without the hall sensors, then reading the 24-bit phase position 
register (suggested M-variable Mx71 for the high 24 bits) at the V-signal transition with U low — the 
hall-effect zero point.  This is best done by killing the motor and rotating it by hand while watching the U 
and V signals on an oscilloscope or matching M-variables in the PMAC Executive program Watch 
Window, and Mx71 in the Watch Window.  The offset value can then be calculated as: 

64*
71Ix

71Ix%71MxOffset =  

The offset computed here should be rounded to the nearest integer. 

The description of Ix81 in the Software Reference manual shows the common values of offsets used, for 
all the cases where the zero point in the hall-effect cycle is at a 0o, 60o, 120o, 180o, -120o, or -60o point — 
where manufacturers generally align the sensors. 
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To find the precise phase position value on the motor index pulse, perform a power-on phasing search 
move to establish a precise phase reference, then read the value of the phase position register Mx71 at the 
index pulse, monitoring the pulse either on an oscilloscope or the matching M-variable on PMAC.  This 
value can be stored in the Ix75 phase position offset variable, which is not used by the automatic 
firmware in this mode.  In actual operation, this value can then be copied into the phase position register 
Mx71 after homing to the index pulse. 
The full phase reference then consists of the following steps: 

• Do a rough phase reference using the hall-effect sensors as specified by Ix81, either automatically on 
power-up/reset if Ix80=1, or on the $ command if Ix80=0. 

• Do a homing search move on the motor, using the index pulse as part of the home trigger. 
• Wait for the motor to settle in-position (following error less than Ix27) at the home position using the 

motor in-position status bit — suggested M-variable Mx40 — [WHILE(M140=0)...] 
• Force the motor phase position register to the pre-determined value at this point with a command like 

Mx71=Ix75. 

Phase Advance 
A velocity phase advance gain term (Ix76) allows the phasing sequence to be advanced in the direction of 
motion by an amount proportional to the velocity to counteract computational delays, and current lags in 
the motor and amplifier.  This feature can significantly increase the top speed of the motor, and greatly 
increase the energy efficiency of the system.  It is not possible when commutating off hall-effect sensors. 

This parameter is usually set interactively by running the motor at high speed, and finding the setting that 
minimizes current draw. 

Switched Reluctance Motor Commutation 
To the PMAC commutation algorithm, a switched (variable) reluctance motor can look the same as a 
permanent-magnet DC brushless motor.  The difference is in the amplifier.  Because the phases of an SR 
motor are driven unidirectionally, the power stage can be simpler.   

However, the analog pre-driver circuitry must convert the bidirectional nature of the PMAC outputs.  
First, the extra phase(s) is generated from the commands alone (not from any actual current information, 
as is desirable for DC brushless and AC induction motors).  Then each of the phase current command 
signals must be half-wave rectified before being sent to the current loop, because in an SR motor, during 
half of the commutation cycle, any current in either direction in a phase works against you. 

AC Induction Motor Commutation 
PMAC can drive standard AC induction motors as position servos by a technique known as indirect 
vector control.  PMAC continually estimates the orientation of the rotor magnetic field and orients the 
current in the stator phases in order both to induce rotor current and to create torque.   

The algorithm turns out to be the same as that for the DC brushless motor, but with the addition of two 
more terms: one is the magnitude of the magnetization (inducing) current (Ix77), which is kept parallel to 
the estimated rotor field, and a slip gain term (Ix78), which determines how much the estimated rotor 
field angle is advanced in response to each unit of stator torque current (which is kept perpendicular to the 
estimated rotor field). 

Setting the Slip Gain 
There is a simple technique for setting the slip gain for an induction motor.  Slip gain is the constant of 
proportionality between applied torque and slip frequency.  If the matching values of slip frequency and 
torque are known, divide the former by the latter, and convert units, to get the slip gain.  Get all of the 
information needed from nameplate information for the motor, amplifier, and controller. 
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Motor Information 
From the motor, obtain the following information: 

• Rated (full load) speed in RPM 
• Rated line (field) frequency in Hertz 
• Number of poles 
• Rated (full load) current (RMS) 

From this information, compute the rated (full-load) slip frequency of the motor as the difference between 
the field frequency and the rotor frequency: 

2
poles#*

minsec/60
)RPM(speedRated

)Hz(freqField)Hz(freqSlip −=  

Use the current information later. 

Amplifier Information 
From the amplifier, obtain the maximum (overload) RMS current as a percentage of the motor’s rated 
full-load RMS current. 

Controller Information 
From PMAC, obtain: 

• The frequency at which the phasing calculations are done 
• Number of peak output (DAC) bits required to command the amplifier to its maximum RMS current 
• The constant of proportionality in the equation relating slip frequency, applied torque, and slip gain. 

The first piece of information will allow conversion of the rated slip frequency to units of electrical cycles 
per phase update — the slip units PMAC uses: 

sec)/updates(RateUpdatePhase
)Hz(FreqSlip

)update/cycles(FreqSlip =  

The phase update rate for PMAC is determined by the master clock frequency and by jumpers E29-E33 
and E98.  The default rate is 9.04 kHz, or 9040 updates/sec. 

The second piece of information will allow conversion of the rated applied torque to units of DAC bits — 
the torque units PMAC uses: 

bits) (DAC           bits) (DAC   
)A(nterRMSCurreMaxAmplifi

)A(RMSCurrentRatedMotor
eMotorTorqueRatedTorqu ⋅=

 

The third piece of information allows division of the slip frequency by the torque to get slip gain in the 
proper units.  The equation for slip gain is: 

)bitsDAC(Torque
)update/cycles(freqSlip*382

)bitDAC(
)update/cycles382(gainSlip =  

This value then gets put into Ix78. 
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Example 
The technique is best illustrated by an example.  Take a system with the following parameters: 

Motor: Rated RMS current: 20A 
 Rated full-load speed: 1755 RPM 
 Rated line speed: 60 Hz 
 Number of poles: 4 

Amplifier: Maximum RMS current: 40A 

PMAC: Peak output for max amplifier current: 32,767 DAC bits (10V) 
 Phase update rate: 9.04 kHz (9040 updates/sec) 
 Constant of proportionality: 238 

From this data, compute the above equations: 

Hz50.1
2*60
4*175560)Hz(freqSlip =−=  

410659.1
sec)/updates(9040

)Hz(50.1
)update/cycles(freqSlip −×==  

Rated Torque = 32768 DAC bits * (20A / 40A) = 16384 DAC bits [214]) 

2784
16384

10659.1*2
)(

)/2( 43838

=
×

=
−

bitDAC
updatecycles

gainSlip  

Ix78 would be set to 2784. 

Setting the Magnetization Current 
Warning 

The technique described in this section can involve the measurement of high and 
potentially deadly voltages unless measuring voltages well isolated from the power 
voltages.  Make sure proper techniques for measuring power-level AC voltages are 
understood thoroughly before attempting this technique. 

Determination of the proper magnetization current is best done with a simple experimental technique.  
The technique relies on the linear relationship between motor speed and back EMF, in which the 
magnetization current provides the constant of proportionality (KE, the velocity, or back-EMF constant, is 
directly proportional to the magnetization current).   

Consider the no-load speed of the motor — equivalent to the line frequency, since there is zero slip at 
zero load.  For a 4-pole motor at 60 Hz, the no-load speed is 1800 RPM.  At this speed, with no load, the 
voltage waveforms from back EMF should be just at the saturation point (for example 380V RMS).   

Give the motor a starting magnetization current, say 5 to 10% of full current (Ix77=1638 to 3276).  Set 
the slip gain (Ix78) according to the above equations.  Measure the back EMF of the motor at a known 
fraction of the no-load speed when it is putting out zero torque (use the O0 open-loop command).  Either 
drive the motor from another motor at the known speed (preferred) or take the motor above this speed 
with a small open-loop torque (e.g. O5), then command O0 and take the measurements as the motor 
coasts through the desired speed. 
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If the measured voltage is too low, the magnetization current is too low.  If the voltage is too high, the 
mag current is too high.  The difference should be proportional: if the voltage is only 75% of what it 
should be, the mag current is only 75% of what it should be.  Adjust Ix77 according to the measurements, 
and try again.  The calculations should be almost correct on the second pass. 

Experimental Setting of Induction Motor Parameters 
If it is not practical to use the induction motor nameplate values to set the induction motor parameters, or 
if it is desired to check whether the parameters derived from the nameplate values are proper, the 
following experimental method can be used.  This method should be used on an unloaded motor because 
it utilizes open-loop commands that create a large number of revolutions that are not well controlled.  The 
settings derived from the tests on an unloaded motor are valid even with the load because the induction 
motor parameters are load independent, functions only of the electrical properties of the motor. 

Select an arbitrary value for Ix77 magnetization current.  If there is a calculated number from the 
nameplate values, use it.  If starting without any previously calculated value, 3000 (about 1/10 of 
maximum) is a good starting value. 

Select an arbitrary value for Ix78 slip gain.  If there is a calculated number from the nameplate values, use 
it.  If starting without any previously calculated value, 4000 is a good starting value 

Gather actual position data from the motor while accelerating the motor with an open loop command.  
Use the PMAC Executive program to select gathering of the actual motor position.  To perform the actual 
gathering, use the following sequence of on-line commands: 

Note 

The values obtained in this test are dependent on the motor’s rotor temperature, 
because the resistance of the rotor, and hence its L/R time constant, change with 
temperature.  It is best to optimize the settings with the rotor hot.  In this case, the 
motor will run less efficiently with the rotor cold, which will require more current, 
heating up the motor towards the proper settings.  Run the motor for several 
minutes at a significant current level (e.g. O30) before trying to do final 
optimization. 

GAT O10   ; Start data gathering, open-loop 10% command 
ENDG    ; Stop data gathering 
O0    ; Open loop 0% to stop motor 

Do not issue the ENDG command until the motor has stopped accelerating.  Upload the data to the PC by 
pressing the F10 key. 

• Plot the velocity-vs.-time graph on the screen.  Calculate an acceleration value from the slope of the 
curve as it leaves zero velocity. 

• Decrease the Ix78 slip gain by 10% and repeat steps 3 and 4.  If the acceleration from zero velocity is 
greater than the first plot, continue decreasing slip gain.  If the acceleration is less than the first plot, 
increase Ix78 from the initial value by 10% and repeat steps 3 and 4. 

• Continue modifying Ix78 slip gain until honing in on a value that provides the maximum acceleration.  
When close, use progressively smaller changes to Ix78 until noticing that there is no significant 
change in the motor response. 

• Multiply the values of Ix77 and Ix88 together.  This product is optimum for the motor (at least at its 
present temperature). 
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• Notice the maximum velocity on the plot that provides maximum acceleration.  The acceleration 
stopped because of the back EMF of the motor, which is proportional to your Ix77 magnetization 
current, matched the supply voltage.  To get to a higher speed than this, decrease the Ix77 value in 
inverse proportion to the desired increase in speed.  To double the speed, decrease Ix77 to 50% of its 
present value. 

If able to tolerate a lower maximum speed, and a higher torque at low speed, increase the Ix77 value.  If 
changing the Ix77 value, change the Ix78 value in inverse proportion, so the Ix77*Ix78 product stays 
constant (newIx78=IdealProduct/newIx77). 

Open-Loop Microstepping Commutation 
PMAC has the ability to do open-loop microstepping (direct microstepping) of standard stepper motors, 
working off internally generated pseudo-feedback for both commutation and servo algorithms.   

This technique is different from using PMAC with a voltage-to-frequency converter to command an 
external microstepping drive; that technique does not utilize the PMAC commutation algorithms at all. 

When microstepping, PMAC provides two analog outputs that are used as current commands for phases 
of the motor.  Typically for a microstepping motor, the two phases are electrically independent and 90o 
out of phase with each other.  In this case, the two outputs are simply bidirectional current commands for 
the H-bridge amplifiers driving each phase.  These amplifiers can be simple torque-mode (current-mode) 
DC brush motor amplifiers. 

The PMAC microstepping algorithm provides 256 microsteps per electrical cycle, which is 64 
microsteps/step.  On a typical 200-step/revolution motor, this amounts to 12,800 microsteps per 
revolution.  With the default phase update frequency of 9 kHz, PMAC can slew at over 576,000 
microsteps/second (9000 full. 

 
Figure 17 PMAC/PMAC2 Direct Microstepping System 

Setting the I-Variables 
Setting up a motor for microstepping is simply a matter of setting motor I-variables according to the 
following list.  Since there is no feedback, there is no tuning necessary. 

Ix01: Set to 1 to enable PMAC commutation. 
Ix02: Set bits 0 to 15 to the lower address of the pair of output DACs you wish to use ($C002 for 

DAC1 & DAC2, $C00A for DAC3 & DAC4).  Set bit 16 to 1 to tell PMAC it is 
microstepping this motor.  For example: I102=$1C002. 

Ix03, Ix04: Set both of these to a register in the encoder conversion table that has processed data 
from the phase position register.  That entry in the table should be set up as follows: 

1st Y-register: $600041($60 is parallel X-word source; $0041 is motor 1 "phase position"): 

 Use $60007D for motor 2; 
 Use $6000B9 for motor 3; 
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 Use $6000F5 for motor 4; 
 Use $600131 for motor 5; 
 Use $60016D for motor 6; 
 Use $6001A9 for motor 7; 
 Use $6001E5 for motor 8. 
 2nd Y-register: $0000FF(Only use lowest 8 bits) 

Remember to point Ix03 and Ix04 to the second line of the entry.  For example, 
WY$720,$600041,$0000FF sets up the conversion table entry; I103= $721 and I104=$721 
point to it ($721=1825 decimal).  

Ix08, Ix09: Set these scaling factors to 32. 
Ix30: Set this proportional gain term to 8192. 
Ix31: Set this derivative gain term to 0. 
Ix32: Set this velocity feedforward term to 65,536. 
 Ix33: Set this integral gain term to 0. 
Ix35: Set this acceleration feedforward term to 65,536.  If a following error is received during a 
jog (likely only on a high- numbered motor), increase this by [65,536 * phase-update-time / 
servo-update-time] — usually [65,536*1/4]=16,384, yielding 81,920.  If still getting a following 
error, increase again by the same increment (usually yielding 98,304). 
Ix69: Set this DAC output limit to 524,287 (219-1). 
Ix70, Ix71: Set Ix70 to 1 and Ix71 to 256 to provide 256 counts (microsteps) per electrical cycle 
(64 microsteps/step).    
Ix72: Set this phase angle parameter to 64 or 192 for the usual two-phase microstepping motor.  
Changing between these two values changes the direction sense of positive rotation.  To try 
microstepping a 3-phase motor, use 85 or 171. 
 Ix77: Set this magnetization current parameter to control the amount of current used in the 
phases.  This holds the maximum number of DAC bits that will be used to command a DAC 
output (current command to the amplifier).  For instance, a value of 16,384 provides a +/-5V 
sinusoidal output on each phase. 
Ix78: Set this slip gain parameter equal to 4,194,304/N, where N is the number of phasing cycles 
per servo cycle, as set by E3-E6.  The default setting of these jumpers provides an N of 4, so Ix78 
would be set to 1,048,576 with the default setting. 
Ix83: Set the phase address parameter to $42 for motor 1, $7E for motor 2, $BA for motor 3, $F6 
for motor 4, $132 for motor 5, $16E for motor 6, $1AA for motor 7, and $1E6 for motor 8. 

Using the Motor 
Once the motor is set up, use it just as any other PMAC motor.  In fact, because it is working off internal 
feedback, this motor can be programmed and tested without any physical motor attached! 

User-Written Commutation Algorithm 
For the sophisticated user with unusual and/or difficult commutation needs, PMAC provides the hooks for 
custom user-written commutation (phasing) algorithms.  These routines are written in Motorola 56000 
assembly language code, usually on a PC or compatible, and cross assembled for the 56000.  Delta Tau 
provides the information about where to pick up the needed information, where to leave the output 
commands, and where to store the algorithm itself.  The writing and download procedure is as for the 
user-written servo algorithm. 

Note 

This is not a task for the inexperienced user.  To attempt this, the user should be 
well acquainted with both motor theory and assembly language coding.   
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The user-written commutation algorithm is enabled by setting Ix59 to 2 or 3 for Motor x (Ix59 = 3 also 
enables the user-written servo).  PMAC will only select between the standard commutation algorithm and 
the user-written commutation algorithm at power-on/reset, so in order to change which algorithm is used, 
Ix59 must be changed, the value must be stored to non-volatile memory with the SAVE command, and the 
card must be reset. 

Memory Space, Software Interface, and Program Restrictions 
The program space allocated for a user-written commutation is: 

• Program code starting address P:$BB00 
• Maximum continuous program length is 256 24-bit words (P:$BB00 to P:$BBFF).  With jump 

instructions, other program memory reserved for user use (P:$8000-P:$BAFF) can be accessed.  
Compiled PLC code, if present, starts at P:$8000; user-written servo, if present, starts at $B800.  
Memory in this range not used for these purposes may be used for user-written commutation. 

The data spaces easily available for variables used in the user-written servo are: 

• Zero-value-initialized registers L:$0770 to L:$077F 
• Uninitialized user registers L:$07F0 to L:$07FF.  These registers retain the last values written to them 

before power-down/reset in battery-backed PMACs; then power up with the last values saved to flash 
memory in flash-backed PMACs. 

• Registers reserved with the DEFINE UBUFFER command; from L:$9FFF, with decreasing address 
values to the declared length of the buffer. 

The user-written commutation algorithm must directly access memory and memory-mapped I/O registers.  
Unlike the user-written servo, no special data is placed into or removed from internal DSP registers.  
Common registers to be used in user-written commutation are: 

• Servo filter result: X:$0045, X:$0081, etc. 
• Encoder phase position register:X:$C001, X:$C005, etc. 

The following restrictions must be observed in the user-written commutation algorithm: 

• The code must start with ORG P:$BB00 
• No assumptions can be made as to the state of any internal DSP registers on entry. 
• No stack use is allowed. 
• If any R, M, or N registers are used, they must be restored before exiting. 
• The B-accumulator register must be cleared on exit (required for PMAC1 only). 
• The code must finish with an RTS instruction. 
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CLOSING THE SERVO LOOP 
The Purpose of the Servo Loop 
PMAC automatically closes a digital servo loop for all activated motors.  The purpose of the servo loop is 
to command an output in such a way to try to make the actual position for the motor match the 
commanded position.  How well it does this depends on the tuning of the servo loop filter — the setting 
of its parameters — and the dynamics of the physical system under control. 

Servo Update Rate 
The servo loop is closed (updated) at a frequency determined by:  

• the master clock rate  
• jumper E98  
• jumpers E29-E33 (which divide down the master clock to generate the phase clock)  
• jumpers E3-E6 (which divide down the phase clock to generate the servo clock)  
• parameter Ix60 (which can extend the servo clock in software).   

Ix60 is useful to slow down the servo update rate for a particular motor, while leaving the faster rate for 
other motors; it is also useful to test quickly whether the required performance can be obtained on all 
motors with a slower servo update; in addition, it can be used slow the update rate below 1 kHz.  
However, it is generally more efficient to slow down the update rate for all motors using the jumpers. 

Reasons to Increase Rate 
How fast should the servo loops be updated in the system?  For most applications, the default setting of a 
442 µsec update can be retained.  There are two basic reasons to change this time.  First, if not getting the 
dynamic performance required, speed up the servo update rate (decrease the update time).  In most 
systems, a faster update rate means that a stiffer and more responsive loop can be closed, resulting in 
smaller errors and lags. 

Reasons to Decrease Rate 
Second, if the routines of lower priority than the servo loop are not executing fast enough, consider 
slowing down the servo update rate (increasing the update time).  The system may be updating faster than 
is required for the dynamic performance needed.  If so, processor time is being wasted on needless extra 
updates.   

For example, doubling the servo update time from 442 µsec to 885 µsec, virtually doubles the time 
available for motion and PLC program execution, allowing much faster motion block rates and PLC scan 
rates. 

There are some systems that get better performance with a slower servo update rate.  Generally these are 
systems with relatively low encoder resolution, usually an encoder only on the load, where the derivative 
gain cannot be raised enough to give adequate damping without causing an unstable buzz due to amplified 
quantization errors.  In this case, slowing down the update rate (increasing the update time) can help to 
give adequate damping without excessive quantization noise. 

Ramifications of Changing The Rate 
If changing the servo update time, many of the existing servo gains Ix30 to Ix39 will behave differently.  
To retain equivalent servo performance, change these values. Refer to the Notch Filter section in this 
manual to see how to re-compute the notch filter parameters Ix36-Ix39.   
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If changing the servo update time with the jumpers, change parameter I10 to match the change in order 
that trajectories are executed at the right speed.  I10 does not have to be changed to match changes in 
Ix60. 

Amplifier Types 
PMAC can interface to a variety of different types of amplifiers.  The type of amplifier used for a 
particular motor has important ramifications for the tuning of the servo loop.  Each of the common types 
is explained below. 

Velocity-Mode Amplifiers 
Many amplifiers accept a velocity command from the controller, and a velocity feedback signal from a 
motor sensor — usually from a tachometer or synthesized from a resolver.  Motors using these amplifiers 
have their velocity loops closed in the amplifier, and should not require use of the derivative gain of the 
PMAC position loop, provided that the velocity loop is well tuned.  In these systems, the PMAC analog 
output represents a velocity command.  These amplifiers also close current loop(s) internally, and if the 
motor is brushless, they perform the phase commutation. 

The key virtue of velocity-mode amplifiers is that in closing an analog velocity loop, they are not subject 
to the quantization errors and sample-rate limitations of a digital velocity loop.  Therefore, they can often 
achieve higher velocity-loop gains, resulting in higher stiffness and better disturbance rejection.  For this 
reason, they are used widely in machine tool cutting applications, maintaining accuracy against high 
cutting forces.   

Because of these high gains, the position-loop proportional gain in PMAC tends to be much lower for 
these amplifiers than for other types.  However, much of the velocity-loop stiffness comes from velocity 
integral gain.  Integral gain in a loop creates a lag, and this makes response to external commands 
sluggish.  Therefore, these amplifiers are not well suited to applications with quick starting and stopping, 
as many indexing applications use. 

As processor speeds increase with DSPs and higher clock rates, helping to overcome sample rate 
limitations, and digital velocity estimation techniques improve with methods such as 1/T, reducing 
quantization errors, velocity-mode amplifiers are being used less and less. 

Before tuning the PMAC position loop, it is important that the velocity loop of a velocity-mode drive be 
well tuned with the load that it will drive.  Because the velocity-loop tuning is load dependent, the 
amplifier manufacturer cannot do the final tuning; the machine builder must tune the loop.  The velocity 
step response must not have any significant overshoot or ringing; if it does, it will not be possible to close 
a good position loop around it with PMAC.  The PMAC Executive Program’s tuning section has a 
function called Open-Loop Tuning that can be used to give velocity command steps to the amplifier and 
to observe the response plotted on the screen.  This makes it easy to tune the amplifier, or simply to 
confirm that it has been well tuned. 

Torque-Mode Amplifiers 
Another popular type of amplifier is the torque-mode amplifier, in which the analog voltage from the 
controller represents a torque command for the motor (a force command for a linear motor).  Since the 
basic motor equation shows that torque is proportional to motor current, these are often called current-
mode or current-loop amplifiers (a current loop must be closed to ensure that the torque out is 
proportional to the voltage in).  Another name occasionally used for these types of amplifiers is the 
transconductance amplifier, signifying that a voltage input results in a proportional current output.  If the 
motor is brushless, these amplifiers also perform the motor phase commutation. 

Newton's second law states that torque or force is proportional to rotary or linear acceleration, 
respectively, so the commands into these amplifiers are effectively acceleration commands.  No velocity 
loop is closed in the amplifier; so it is up to PMAC to close the velocity loop itself to get enough damping 
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for a stable system.  With the standard PID filter, this is done with the derivative gain, so it is important to 
have enough derivative gain in these systems for stable response. 

Torque-mode amplifiers are popular for several reasons.  Since they do not need a tachometer or analog 
velocity-loop electronics, they can be simpler and less expensive.  Because the current loop gains are 
dependent only on motor properties, and not on the load, they can be tuned by the manufacturer for the 
particular motor that is being used.  No retuning is required by the machine builder when the motor is 
connected to the load. 

In addition, torque-mode amplifiers generally work better in applications with rapid accelerations and 
decelerations.  They do not depend heavily for their performance on error integrators, which introduce 
time lags and slow response to velocity changes.  As such, they are often preferred over velocity-mode 
amplifiers, even without the cost advantage. 

Voltage-Mode Amplifiers 
Voltage-mode amplifiers are the simplest and least costly amplifiers.  A voltage command input causes a 
larger proportional voltage output to the motor.  No feedback of any kind is used in the amplifier itself.  
However, they are usually unsuitable for industrial position control applications for several reasons. 

First, a voltage command to the motor must overcome the motor’s L/R electrical time constant to cause 
current in the motor.  This can create delays in motor response.  Second, the voltage command to the 
motor that can produce current even after the delay is only that voltage above the back EMF of the motor; 
therefore the torque produced is dependent on the motor speed.  For both of these problems, it is up to the 
slower digital position and velocity loops to try to correct. 

Finally, controlling current directly is the best way of preventing damaging overcurrent conditions.  Most 
industrial servomotors work with a supply voltage that could burn them up if they were exposed fully to it 
for just several milliseconds without substantial back EMF.  If current sensors are required anyway for 
protective overcurrent shutdown, they can also be used to close current loops at very little additional cost. 

The behavior of voltage-mode amplifiers is somewhere between velocity-mode amplifiers and torque-
mode amplifiers.  At low loads, the speed is limited by the back EMF of the motor; at low speeds, the 
current is limited by the resistance of the armature.  From the controller's point of view, the motor gets 
some damping from its own back EMF, but not enough for most positioning applications, so it must be 
supplemented with the controller's derivative gain. 

Sinusoidal-Input Amplifiers 
A relatively new type of amplifier for brushless motors, both permanent-magnet and induction, that does 
not do the commutation itself, relying on a controller such as PMAC to do it, expects two analog phase 
current commands from the controller.  At a constant velocity and load, these commands will be 
sinusoidal waveforms, so these amplifiers are sometimes called sinusoidal-input amplifiers. 

The amplifier still closes current loops on these phases, and it generates the third and fourth phase 
commands if necessary through simple balance loops.  To the PMAC servo loop, this type of amplifier 
looks like a torque-mode amplifier; the magnitude of the sinusoids is proportional to the torque command.  
The servo algorithm produces a single torque command; however, instead of writing this command value 
directly to an analog output, PMAC processes it through the commutation algorithm to produce two 
analog outputs. 

There are several advantages to this type of amplifier.  First, it permits use of the PMAC high-
performance commutation algorithms, which often provide superior performance to amplifier 
commutation.  Second, for synchronous motors (permanent magnet and switched reluctance), it allows the 
use of less expensive incremental position sensors, because of the PMAC power-on phasing search 
capabilities.  Third, it reduces wiring, because only the controller needs position feedback, not the 
amplifier.   
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Finally, it provides a safer failure mode on loss of feedback.  When a servo algorithm loses feedback, it 
puts out a large torque command, which can cause runaway.  However, when a commutation algorithm 
loses its feedback, it will either lock in like a stepper motor (for a synchronous motor), or at least fail to 
generate significant torque (for an asynchronous — induction — motor).  When both the servo and 
commutation algorithms use the same feedback sensor connected over the same cable, both will lose 
feedback if one does, creating a much more benign failure condition. 

Pulse-and-Direction Amplifiers 
Most stepper-motor amplifiers, and some stepper-replacement servo amplifiers, accept pulse and direction 
inputs, where each pulse is a position increment.  PMAC can generate this command format by passing its 
analog command voltage through a voltage-to-frequency (V/F) converter such as the ACC-8D Option 2 
board.  In these systems, the true position loop is closed in the amplifier, as well as any velocity loops, 
current loops, and motor commutation. 

PMAC must close a false position loop for these motors using the electronically generated pulse train as 
feedback.  Since the output command is a frequency, or rate, of position change, it is effectively a velocity 
command, and the loop can be tuned like that for a velocity-loop amplifier.  The manual for ACC-8D Opt 
2 V/F board has a list of optimal gain settings for each frequency version of the board. 

Hydraulic Servo Amplifiers 
Hydraulic servo valves create a pressure or force proportional to their command voltage by controlling 
the orifice opening.  Therefore, to the controller's servo loop it looks like a torque-mode amplifier 
requiring derivative gain for stability.  Some machine builders use the less expensive hydraulic 
proportional valves.  These valves have substantial crossover deadband compared to the servo valves.  
This deadband can be compensated for to some extent with the PMAC Ix64 and Ix65 deadband 
compensation, but the physical limitations of such an amplifier must still be realized. 

Hydraulic motor amplifiers can be either torque-mode or velocity-mode, depending on whether they use a 
velocity sensor and close a velocity loop themselves.  To the PMAC servo loop, these amplifiers look just 
like the amplifiers of the same type for electromagnetic motors. 

PID Servo Filter 
The standard PMAC controller provides a PID position loop servo filter.  Usually, this filter is sufficient 
to control the system, and easily understandable as well, even for non-control specialists.  The filter is 
tuned by setting the appropriate I-variables for each motor.  

How the PID Filter Works 
The proportional gain (P — Ix30) provides the stiffness of the system; the differential gain (D — Ix31) 
provides the damping for stability; the integral gain (I — Ix33) eliminates steady-state errors.  Ix34 
determines whether the integral gain is active all the time, or just during periods when the commanded 
velocity is zero.   
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Figure 18 PMAC PID and NOTCH Servo Filter 

In addition, velocity feedforward gain (Ix32) reduces following errors introduced by damping (which are 
proportional to velocity), and acceleration feedforward gain (Ix35) reduces or eliminates following errors 
due to system inertia (which are proportional to acceleration). 

Tuning the PID Filter 
The PMAC Executive Program for PC-compatible computers provides an easy means of tuning the PID 
filter.  It allows simple commands that automatically perform standard moves, gather the response data, 
plot this data to the screen, and compute important statistics for the response.  This permits even 
inexperienced users to make some judgments according to simple (provided) rules to optimize the tuning.  
Detailed instructions and examples are provided in the Executive Program manual. 

The Executive program also has an auto-tuning function that stimulates the motor, evaluates the response, 
and calculates the gains required for the desired response level.  This function allows the computer to 
make all of the decisions as to what the proper gains should be. 
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Figure 19 PMAC PID Servo Loop Modifiers 

Actual PID Algorithm 
The actual equation used in the PID algorithm to compute the commanded output for motor x is as 
follows: 








 ⋅⋅
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where: 
• DACout(n)  is the 16-bit output command (-32768 to +32767) in servo cycle n.  It is converted to a -

10V to +10V output.  DACout(n) is limited by Ix69. 
• Ix08 is an internal position scaling term for motor x  (usually set to 96). 
• Ix09 is an internal scaling term for the velocity loop for motor x. 
• FE(n) is the following error in counts in servo cycle n, which is the difference between the 

commanded position and the actual position for the cycle [CP(n) - AP(n)]. 
• AV(n) is the actual velocity in servo cycle n, which is the difference between the last two actual 

positions [AP(n) - AP(n-1)] in counts per servo cycle. 
• CV(n) is the commanded velocity in servo cycle n: the difference between the last two commanded 

positions CP(n) - CP(n-1)] in counts per servo cycle. 
• CA(n) is the commanded acceleration in servo cycle n, which is the difference between the last two 

commanded velocities [CV(n) - CV(n-1)] in counts per servo cycle 

IE(n) is the integrated following error in servo cycle n, which is: 

n-1 

∑   [FE(j)] 
j=0 

(For all servo cycles for which the integration is active.  Ix34=1 turns off the input to, but not the output 
from the integrator when CV does not equal zero.) 



PMAC User Manual 

Closing the Servo Loop 9-7 

Notch Filters 
The PMAC can be used to set up notch filters.  A notch filter is an anti-resonance (band-reject) filter used 
to counteract a physical resonance.  While there are many different philosophies as to how to set up a 
notch filter, we recommend setting up a lightly damped band-reject filter at about 90% of the resonant 
frequency, and a heavily damped band-pass filter somewhat greater than the resonant frequency (to 
reduce the high-frequency gain of the filter itself). 

For those familiar with control theory (not necessary to use the notch), the form of the PMAC notch filter 
system is: 

2D2z1D1z1

2N2z1N1z1
D(z)
N(z)

−+−+

−+−+
=  

where the numerator — N(z) — is the band-reject filter, and the denominator — D(z) — is the band-pass 
filter.  The notch filter acts on the output of the PID filter itself. 

PMAC uses four I-variables to specify the full notch filtering system: two (Ix36 [N1] and Ix37 [N2]) for 
the band-reject filter, and two (Ix38 [D1] and Ix39 [D2]) for the band-pass filter.  These I-variables 
represent the actual coefficients used in the difference equations for the notch.  These I-variables have a 
range of -2.0 to +2.0; they are 24-bit values, with one sign bit, two integer bits, and 21 fractional bits. 

Before implementing a notch filter in the PID-Plus algorithm, tune the PID parameters somewhat to get at 
least minimal performance, even if control of oscillations is poor. 

Automatic Notch Specification 
With the PMAC Executive Program, set up a notch filter (this can be done without the need to understand 
how a notch filter works).  The easiest way is to enter the frequency of the mechanical resonance that to 
control.  The Executive Program will compute automatically the desired characteristics of the band-reject 
and band-pass filters, calculate their coefficients, and download them to PMAC.  Alternatively, the 
desired characteristics of the band-reject and band-pass filters can be specified individually, and PMAC 
will compute the coefficients to achieve those characteristics and download them to PMAC.  Refer to the 
PEWIN Software User Manual for more details. 

Manual Notch Specification 
To compute the notch filter coefficients manually, consider the continuous transfer function for a notch 
filter: 

( )
2
npnpp22s

2
nznzz22s

sG
ωωζ

ωωζ

++

++
=  

Start with five parameters for the filter: 

• ωnz: the natural frequency of the zeroes in radians/second (not in Hertz) 
• ζz: the damping ratio of the zeroes 
• ωnp: the natural frequency of the poles in radians/second (not in Hertz) 
• ζp: the damping ratio of the poles 
• Ts: the servo-loop sampling period in seconds (not in msec) 

To compute radians/second from Hertz, multiply by 2π (6.283).  To compute the sampling period in 
seconds from the sampling rate in kHz, first multiply the rate by 1000 to get Hz, and then take the 
reciprocal.  Remember that the sampling period is equal to (Ix60+1) times the servo-interrupt period. 
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First, compute the following intermediate values:  
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Then compute the filter coefficients: 
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Finally, modify the proportional-gain term to compensate for the DC-gain change that the filter creates: 
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For example, suppose a 55 Hz resonance has been identified in the mechanical coupling.  To compensate 
for this, put a lightly damped band-reject filter (damping ratio 0.2) at 50 Hz natural frequency, and a 
heavily damped band-pass filter (damping ratio 0.8) at 80 Hz natural frequency to limit the high-
frequency gain of the filter.  The servo update time is the default of 442 microseconds. 
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Next compute the filter coefficients: 
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Finally, compute the DC gain adjustment, assuming for the example that the existing proportional gain 
term Ixx30 had been 500,000: 
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DC Gain Correction:  
Finally, multiply the old proportional gain  (Ix30) by the reciprocal of the notch DC gain.  If Ix30 was 
100,000 before implementing the notch, to keep the same stiffness set: 

Ix30 = 227000  ; 100,000 * 2.27 

Play with Ix30 some more now to modify loop stiffness without affecting the characteristics of the notch.  
Indeed, one of the important reasons for introducing a notch is to be able to increase the stiffness of the 
loop without going unstable. 

Other Uses of the Notch Filter 
The notch filter is really a generalized second-order digital filter that can be put to uses other than creating 
a notch.  This can give great flexibility in tailoring the performance of the servo algorithm. 

Lead-Lag 
The notch filter can be used as a lead-lag filter if the roots are real rather than imaginary.  A lead-lag filter 
is similar in performance to a PID filter; it is useful when filter settings are determined analytically rather 
than experimentally.  When a basic lead-lag servo filter is desired, all servo gains Ix31 to Ix35 should be 
set to zero; Ix30 is used as the generalized gain term. 

Low-Pass Filter 
It is also possible to use this filter component as a low-pass filter if reducing roughness of operation is 
more important than high system bandwidth.  This can be accomplished by setting the D1 term (Ix38) to a 
positive value between 0.0 and 1.0.  The larger the value, the lower the cutoff frequency of the filter.  The 
DC gain of this filter is 1/(1+D1), so the proportional gain needs to be increased by a factor of (1+D1) to 
keep the overall loop gain the same 

Extended (Pole-Placement) Servo Filter 
For systems with more difficult dynamics, such as multiple resonances and low-frequency resonances, the 
extended servo algorithm purchased with PMAC Option 6 can be used instead of the PID filter.  When 
Option 6 is purchased, all motors on the PMAC must use the extended algorithm instead of the PID; no 
mixing is possible.  With Option 6, the meanings of I-variables Ix30-Ix69 are different from the standard 
PMAC; refer to the manual for the extended servo algorithm for these meanings. 

Because the extended algorithm is expressed in pole/zero form instead of gain form, it is not an intuitively 
tuneable filter like the PID is.  For this reason, usually the ACC-25 Servo Evaluation Package must be 
used to tune this filter properly. 
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Figure 20 Extended Control Alogorithm Block Diagram 

 

User-Written Servo Filter 
For the sophisticated user with very unusual and/or difficult dynamics, PMAC provides the hooks for 
custom user-written servo algorithms.  These routines are to be written in Motorola 56000 assembly 
language code, usually on a PC or compatible, and cross assembled for the 56000.  Delta Tau provides the 
information about where to pick up the needed information, where to leave the output commands, and 
where to store the algorithm itself.   

 
Note  

This is not a task for the inexperienced user.  To attempt this, the user should be 
well acquainted with both servo theory and assembly language coding. 

What is Needed to Write the Filter 
The user-written filter will be written on host computer using a cross-assembler.  Motorola provides 
56000 cross-assembler programs for IBM-PC and compatibles (SSP56000CLASa), Macintosh II 
(SSP56000CLASb), Sun-3 workstations (SSP56000CLASc), and DEC VAX computers 
(SSP56000CLASd).  Almost all will work on the IBM-PC, because the file will have to be converted to 
DOS format anyway. Typically, the routine will be written using a simple screen editor, then converted to 
56000 machine code with the cross-assembler.  The machine-code file should have the DOS suffix LOD 
for the steps below. 

Download and Enable Procedure 
Step 1 
Assemble the user-written filter into a DOS file with an LOD suffix. 

Step 2 
Execute the IBM-PC conversion program CODE.EXE that is provided by Delta Tau to convert the 
machine code file into a format acceptable by PMAC.  Do this by typing at the DOS prompt: 

CODE {filename} <ENTER> 



PMAC User Manual 

Closing the Servo Loop 9-11 

where {filename} is the name of the machine code file (without the .LOD suffix).  CODE will 
generate a file called {filename}.PMC that can then be sent to PMAC. 
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Step 3 
Execute the PMAC Executive Program and select the Editor menu (with mouse, <ALT-E>, or <F10>E).  
Select the Download File to PMAC option, and type in the name of the file in response to the prompt 
(.PMC is the default suffix).  Once <ENTER> is pressed, the Executive Program will download the file 
automatically to the proper PMAC memory location, where it will be held indefinitely by the battery-
backed RAM. 

Step 4 
Enable the user-written filter for each desired motor by setting Ix59for that motor to 1 or 3.  If Ix59 is 0 or 
2 for a motor (the default), it will use the standard servo algorithm.  

Memory Space, Software Interface, and Program Restrictions 
The program space allocated for a user-written servo is: 

• Program code starting address: P:$B800 (P:$9C00 in V1.14 and older) 
• Maximum allowed program length is 1K 24-bit words (P:$B800 to P:$BBFF; or P:$9C00 to P:$9FFF 

in V1.14 and older) 

Usable Data Spaces 
The data spaces available for variables used in the user-written servo are: 

• Zero-value-initialized user registers L:$0770 to L:$077F 
• Uninitialized user registers L:$07F0 to L:07FF.  These registers retain the last values written to them 

before power-down/reset in battery-backed PMACs; they power up with the last values saved to flash 
memory in flash-backed PMACs. 

• Registers reserved with the DEFINE UBUFFER command; from L:$9FFF, with decreasing  address 
values to the declared length of the buffer. 

Interface to Other Firmware 
The following software interface format is used for the PMAC firmware in order to communicate with a 
user-written filter: 

• On entry, the B accumulator contains a 48-bit integer representing desired position (DPOS) in units of 
1/(Ix08*32) counts. 

• On entry, the X register contains a 48-bit integer representing actual position (APOS) in units of 
1/(Ix08*32) counts 

• On entry, the A accumulator contains a 48-bit integer representing desired velocity (DVEL) in units 
of 1/(Ix08*32) counts/servo cycle. 

• On entry, the Y1 register contains the value of Ix08.On entry, the R1 register contains the address of 
the servo status register for the motor whose loop is to be closed ($003D for Motor 1, $0079 for 
Motor 2, etc.).  This information can be used when servoing multiple motors to distinguish motor-
specific registers. 

• On exit, the upper 18 bits of A1 should contain the control effort for the motor.  If the motor is not 
commutated by PMAC (Ix01=0), this value will be loaded directly into the DAC register.  If the 
motor is commutated by PMAC, this value will be used by the phasing routines to create two DAC 
outputs. 

• The user-written filter algorithm must end with a JMP instruction to location P:$0023. 
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Restrictions 
The following restrictions must be observed in the user-written code: 

• Only one level of stack use is allowed. 
• Do not write to 56000 address registers R2, R3, R6, or R7; modifier registers M2, M3, M6, or M7; or 

offset registers N2, N3, N6, or N7.  Other R, M, and N registers may be written to, but must be 
restored before exiting the user-written code. 

• Apart from the A, B, X, and Y registers, all other 56000 registers must be restored before exiting the 
user-written code. 

Alternative Uses for User-Written Servo 
This calculation does not have to be used to close the servo loop for a motor or motors.  It can be thought 
of simply as a very fast software routine that executes every servo cycle without fail.  As such, it can be 
used as a super-fast PLC program (better by far in speed than PLC 0). 

The most common use for this user-written non-servo is for the very fast setting and clearing of many 
outputs based on position (when more is needed than just the hardware position-compare output).  Using 
this routine for such a function has several advantages over a PLC program.  First, it is written in 
assembly language, so there are no compilation inefficiencies or interpretation delays.   

Second, it can use simple fixed-point arithmetic, rather than the floating-point arithmetic that the PLC 
(and motion) programs use.  Third, it is guaranteed to run at a fixed rate; even PLC 0 can be delayed by 
motion programs. 

To implement such a function, activate an extra motor (Ix00=1) and tell it to use the user-written servo 
(Ix59=1).  The motor must be in a closed-loop enabled state for the algorithm to execute; this will happen 
automatically if Ix80=1, or it can be brought into this state with a J command.  Do not worry about where 
to pick up and leave off the servo information, but be careful not to disturb anything else. 

Simple User-Written Servo Example 
; ENTER: B=demand angle (integer), 
;   X=actual angle (integer). 
;;   EXIT:  upper 18 bits of A1=DAC (integer), 
; 
; 
; This servo routine executes a low pass filter of 
; the form: uf(k)=a1*error(k)+a2*uf(k-1) 
;  
; Prior to enabling this routine a1 & a2 should be  
; initialized in L:COEF_A cells. Also, Sampling  
; period factor and its counter should be  
; initialized in L:SAMP_A. Notice the sampling 
; period counter always should be less than the  
; sampling period factor. The content of the  
; sampling period factor cell represents an integer  
; multiple of the hardware selected PMAC servo  
; sampling period. In this way the sampling frequency 
; may be reduced from the the PMAC default value. 
; 
OLD_UF_A  EQU   $0770  ;Old UVAL after filter. 
COEF_A    EQU   $07F0   ;Filter coef. a1 (x mem.), a2 (y mem). 
SAMP_A    EQU   $07F1         ;Sampling period factor (y mem.) &  
                              ;counter (x mem.). 
DEMAND_A  EQU   $07F2         ;Address for the temp. storage of  
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 ;demand value. 
ACTUAL_A  EQU   $07F3         ;Address for the temp. storage of  
 ;actual value. 
DAC_A     EQU   $07F4         ;Address for dac value. 
ORG     P:$B800 
CLR     B       B10,L:DEMAND_A ;Save the demand in memory. 
MOVE            #1,B1         ;B1=1. 
MOVE            X:SAMP_A,A    ;A1=counter. 
ADD     B,A     Y:SAMP_A,Y0   ;Counter=counter+1, Y0=samp. factor. 
SUB     Y0,A    A1,X:SAMP_A  ;Compare counter with factor & save  
 ;count. 
JMI     ESERVO                ;Skip if counter < samp. factor. 
MOVE    A1,X:SAMP_A           ;Clear and save the counter. 
MOVE    Y:DEMAND_A,B         ;Load demand position (assuming 24- bit) 
MOVE    X1,A                  ;Load Actual position (assuming 24- bit) 
SUB     A,B                   ;Form the 24-bit error(k) 
                              ;Now execute the low pass filter and exit 
                              ;with value of DAC in the upper 18 bits  
                              ;of A1 (integer). 
                              ; 
RND    B       X:COEF_A,X1    ;Round B adding 1 to bit 23 (of B0). 
MOVE   X:OLD_UF_A,X0 B,Y1     ;X0=uf(k-1), Y1=error(k), X1=a1. 
MPY    X1,Y1,B Y:COEF_A,Y0    ;B=a1*error(k), Y0=a2. 
MACR           X0,Y0,B        ;B=a1*error(k)+a2*uf(k-1). 
MOVE           B,X:OLD_UF_A   ;Save uf(k) 
ESERVO   
MOVE           X:OLD_UF_A,A   ;LOAD SAVED DAC VALUE 
MOVE           A0,A1 
REP    #6 
ASL    A 
JMP    <$23                   ;RETURN TO SERVO 
END 

C Program to Convert .LOD File to PMAC Format 
/* .LOD TO .PMC CONVERSION PROGRAM 09/04/90 V1.0 */ 
#include <string.h> 
#include <stdio.h> 
#include <stdlib.h> 
FILE   *infile,*outfile; 
Char   buf[81],bufr[32768]; 
Int    l,m,n,x,y; 
void main (argc,argv) 
int   argc; 
char  *argv[]; 
{ 
   m = 0; 
   x = 0; 
   if (argc > 1) { 
      infile =  fopen(strcat(strcpy(buf,argv[1]),".lod"),"r"); 
   if (infile != NULL) { 
         outfile = fopen(strcat(strcpy(buf,argv[1]),".pmc"),"wb"); 
         setvbuf(outfile,bufr,_IOFBF,32767); 
         while(fgets(buf,80,infile)!=NULL&&strncmp(buf,"_DATA  P",7)!=0); 
            sscanf(buf+8,"%4x",&y); 
         while(fgets(buf,80,infile)!=NULL&&strncmp(buf,"_END",4)!=0) { 
            n = 0; 
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            l = strlen(buf); 
            while (l > n+5) { 
               switch (m) { 
               case  0:  
                  fprintf(outfile,"WP$%04X",y); y += 5; 
               default:  
                  fprintf(outfile,",$%c%c%c%c%c%c",buf[n],buf[n+1],buf[n+2], 
                          buf[n+3],buf[n+4],buf[n+5]); 
               } 
               n += 7; 
               m += 1; 
               if (m==5) { 
                  m = 0; 
                  fprintf(outfile,"\r\n"); 
               } 
            } 
         } 
         if (m>0) fprintf(outfile,"\r\n"); 
      } 
   } 
} 
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MAKING YOUR APPLICATION SAFE 
Responsibility for the Safety of a Control System 
Delta Tau Data Systems has provided many safety features on the PMAC controller, and invested many 
resources to make PMAC a safe product.  However, the ultimate responsibility for the safety of a control 
system using PMAC must lie with the system designer, utilizing the safety features on PMAC and in 
other parts of the system. 

Hardware Overtravel Limit Switches 
PMAC has positive and negative hardware overtravel limit switch inputs associated with each encoder 
input.  These inputs are optically isolated, with fail-safe circuit design.  The inputs must actively be held 
low, with the card sourcing current (i.e. a normally closed switch) for PMAC to consider itself not into 
the limit.  The source of the current is either the external +15V input that powers the analog output stage, 
the +12V bus power line if that is jumpered over to power the analog output stage (defeating the analog 
optical isolation), or a +24V input brought in on the JMACH2 OPTO+V pin.  Jumpers E89 and E90 
control which of these sources is used.  They must be set properly for the card to be able to move. 

Each motor must be directed to look at one of these pairs of inputs — this is done by setting I-Variable 
Ix25 (for motor #x) to the address of the register that holds the appropriate inputs.  On hitting a limit, 
PMAC decelerates the offending motor at a user-programmed rate (see I-variable Ix15).  If the motor is in 
a coordinate system that is running a motion program at the time, all motors in the coordinate system are 
decelerated to a stop at their own Ix15 rate.  The effect is equivalent to issuing an A (abort) command. 

The limit input pins are direction sensitive: the -LIM pin only stops positive direction moves (those 
coming at it from the negative side), and the +LIM pin only stops negative direction moves (those coming 
at it from the positive side).  This makes it possible to command a move out of the limit that you have run 
into.  However, this also makes it essential to have your limit switches wired into the proper inputs, or 
they will be useless. 

The hardware limit function can be disabled for a motor by setting bit 17 of Ix25 to 1.  This can be useful 
for homing into a limit switch (which will not work if the limits are enabled, the default condition), or for 
a system where hardware overtravel limit switches are not practical, such as rotary tables.  If the address 
of the flags in Ix25 were $C004, the value of Ix25 with limits disabled would be $2C004. 

Note 

PMAC brings the commanded trajectory for the motor to a stop at the Ix15 rate as 
soon as it detects a limit condition.  If there is significant following error at the 
time, the actual position can try to "catch up" to the commanded position for a long 
period of time.  With a large enough following error, it is possible that the 
commanded position would be well past the limit and into the hard stop.  It is 
important to set a reasonable fatal following error limit and to allow sufficient 
room past the limit switch to absorb errors up to that following error limit.   

The polarity of the limit switches is the opposite of what many people would 
consider intuitive.  That is the -LIMn input should be tied to a switch at the 
positive end of travel, and the +LIMn input should be tied to a switch at the 
negative end of travel.  Make sure you test carefully the polarity of your limit 
switches. 

Software Overtravel Limits 
PMAC also has positive and negative software limits for each motor to complement or replace the 
hardware limits.  The user-set values (Ix13 and Ix14 parameters for motor #x) for these limits cannot be 
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saved in EAROM on battery-backed boards; they are held in battery-backed RAM.  The behavior on 
hitting these limits is the same as for hardware limits.  A value of zero in these parameters disables the 
limit.   

The software limits are disabled automatically during homing search moves, until the homing trigger is 
found.  As soon as the trigger is found, the software limits are reactivated, using the new home position as 
the reference.  If overtravel limits are used, they should be far enough from the home position to allow for 
deceleration and turnaround after the trigger is found. 

Following Error Limits 
PMAC has three following error limits for each motor (following error is the difference between the 
commanded position and the actual position at any time).  The following error limit is an important 
protection against serious system faults, such as loss of feedback that can cause dangerous conditions like 
full speed runaway. 

Fatal Following Error Limit 
One of these limits (Ix11) is a fatal limit, which causes a shutdown of the system — zero output 
commanded, amplifier disabled (i.e., the motor is killed), moves for the motor and programs for the 
motor's coordinate system aborted.   

Which amplifiers get disabled — only the offending motor, all in the coordinate system, or all in PMAC 
— is determined by Ix25. This limit is intended for conditions where something has gone seriously wrong 
(e.g., loss of feedback or power stage) and all operation should cease.   

After the motor or motors have been killed due to the fatal following error limit, closed-loop control can 
be re-established with the J/ command (single motor), the A command (coordinate system), or the 
<CTRL-A> command (entire card). 

Warning Following Error Limit 
The second limit (Ix12) is a warning limit — when exceeded, PMAC sets status bits for the motor and the 
motor's coordinate system, and can set output lines on the control panel connector, the machine 
connectors, and through the programmable interrupt controller (for PMAC-PC and PMAC-STD).  This 
permits special action to be taken, either by PMAC itself through a PLC program, by the host, which can 
find out through an interrupt or by polling the card, or by an operator notified with one of the external 
signals. 

These limits may be disabled by setting the parameter to zero, but this is strongly discouraged in any 
application that has the potential to kill or injure people, or even to cause property damage.  Disabling the 
fatal limit removes an important protection against serious fault conditions that can cause runaway 
situations, bringing the system to full power output faster than anybody could react. 

Integrated Following Error Protection 
In addition to the normal following error protection provided by the Ix11 variable for each motor, PMAC 
can shut down the motor if the time-integrated value of the following error exceeds a preset value.  This 
integrated error feature can protect against those cases where the magnitude of the measured following 
error never gets very large — for example, a loss of feedback followed by a very short commanded move. 

PMAC only performs the integrated following error check if the Ix63 integration limit parameter is less 
than zero.  When this is the case, the magnitude of Ix11 is used for the normal unintegrated following 
error check, but in addition, the value of the PID integrator is compared against the Ix63 integration limit 
magnitude.  If the integrator value has saturated at +/-Ix63 (the limiting function in the PID loop will not 
let it exceed this value), then PMAC will trip (kill) this motor on an integrated following error fault, just 
as it would for a normal following error fault. 
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For the integrated following error limit to be effective, the Ix33 integral gain must be greater than zero, 
and preferably set as high as can be tolerated.  Also, the Ix34 integration mode parameter must be set to 0, 
so that the integrator is on during programmed moves.   

Remember that the integrator stops increasing in magnitude if the command output has saturated at Ix69.  
The magnitude of Ix63 must be small enough that it will trip before the output saturates.  The magnitude 
of Ix63 that would cause output saturation at Ix69 from the integrator alone is: 















∗
∗
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The magnitude of Ix63 must be less than this value for the shutdown function to be effective.  Remember 
that there will be other components to the output, for instance from the proportional gain.  With a bare 
motor, test to see that this limit can trip the motor reliably. 

When a motor is killed due to integrated following error fault, the standard following error fault motor 
status bit is set.  In addition, a separate integrated following error fault motor status bit is set.  Both bits 
are cleared when the motor is re-enabled. 

Note 

The integrated following error protection feature is not available on PMACs with 
the Option 6 Extended Servo Algorithm firmware.  That algorithm has no 
integrator register in the servo to compare against a limit. 

Velocity Limits 
PMAC has a programmable velocity limit for each motor (Ix16) that is in effect for linear blended 
program moves. Circular, PVT, rapid, and splined moves do not observe this limit.  If the commanded 
velocity requested of a motor exceeds the limit for the motor, the move is slowed so that the velocity limit 
is not exceeded.  In a multi-axis programmed move, all axes in the coordinate system are slowed 
proportionally so that no change in path occurs.  Velocities are compared to these limits assuming no 
feedrate override (% value of 100); if feedrate override (a.k.a. time-base control) is used, the velocity 
limits scale with the override.  When PMAC is automatically segmenting moves (I13 > 0), the Ix16 
velocity limits are not observed. 

Acceleration Limits 
PMAC has two programmable acceleration limits for each motor, one for jogging and homing moves 
(Ix19), and one for linear blended program moves (Ix17). Circular, rapid, PVT, and splined moves do not 
observe this limit.  If the commanded acceleration requested of a motor exceeds the limit for the motor, 
the acceleration is stretched out so that the acceleration limit is not exceeded.  In a multi-axis blended 
programmed move, all axes in the coordinate system are slowed proportionally so that no change in path 
occurs.  Accelerations are compared to these limits assuming no feedrate override (% value of 100); if 
feedrate override (a.k.a. time-base control) is used, the acceleration limits scale with the override.  When 
PMAC is segmenting moves (I13 > 0) automatically, which is required for Circular Interpolation, the 
Ix17 accelerations are not observed. 

Ix17 is particularly useful to prevent unreasonable moves early in system development, when it is easy to 
make large mistakes in scaling.  In some systems, it can be used during the actual application to make 
sure that accelerations always happen in the minimum time.  In these applications, the TA and TS 
acceleration times are set very small so that the Ix17 limit is always used. 

Sometimes the Ix17 limit is too effective limiting when it is not wanted; other times it is not effective 
enough, permitting the trajectory to violate the limit.  For more details, reference Chapter 14, Writing 
Programs for PMAC. 
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Command Output Limits 
PMAC has a programmable output limit (on the command PMAC sends to the amplifier) for each axis 
(Ix69), which acts as a torque limit for current-loop amplifiers, or an actual velocity limit for tachometer 
amplifiers.  If this limit is engaged to change what the servo loop commands, the PMAC anti-windup 
protection activates to prevent oscillation when coming out of the limiting condition.  In addition, there is 
a limit on the size of the error that the feedback filter is permitted to see (Big Step limit: Ix67), which has 
the effect of slowing down too sudden a move in a controlled fashion. 

Integrated Current (I2T) Protection 
PMAC can be set up to fault a motor if the time-integrated current levels exceed a certain threshold.  This 
can protect the amplifier and/or motor from damage due to overheating.  This type of protection is 
commonly known as I2T (eye-squared-tee) because it measures integrates the square of current over time 
— power dissipation is proportional to the square of current. 

Some amplifiers have their own internal I2T protection, but many others do not.  The PMAC I2T 
protection can be used in either case.  It reads the PMAC commanded current registers to determine 
current levels, so it can be used without bringing actual current measurement signals into PMAC.  It can 
be used with any amplifier for which PMAC computes current commands, whether or not PMAC also 
performs the commutation and/or digital current loop functions.  It is not suitable for use in systems 
where PMAC outputs a velocity command, either analog velocity or a pulse frequency. 

Note 

The I2T protection feature is not available on PMACs with the Option 6 Extended 
Servo Algorithm firmware.  Ix57 and Ix58 have other functions in that firmware 
version. 

Two I-variables control the functioning of the I2T protection for each motor.  Ix57 is the continuous 
current limit magnitude.  It has the same units as the Ix69 instantaneous output limit, bits of a 16-bit DAC 
(even if some other output device is used).  Both have a range of 0 to 32,767, where 32,767 is the PMAC 
maximum possible output magnitude.  Generally Ix57 will be 1/4 to 1/2 of the value of Ix69. 

Ix58 is the integrated current limit parameter.  If Ix58 is set to 0, this function is disabled.  If Ix58 is 
greater than 0, PMAC will compare the integrated current value to Ix58  When the integrated current 
value exceeds this value, PMAC will fault this motor as if an amplifier fault had occurred.  The offending 
motor is killed; if it was in a coordinate system running a motion program, that motion program aborted; 
other motors are killed according to the setting of bits 21 and 22 of Ix25. 
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The PMAC I2T function works according to the following equation: 
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where: 
a. Iq 

(quadrature current) is the commanded torque-producing output of the PID filter in 
units of a 16-bit DAC; 

b. Id  
(direct current) is the magnetization current command as set by Ix77.  This is usually 
zero except when PMAC is doing vector control of induction motors. 

c. ∆ t  
is the time since the last sample in servo cycles 

If Sum exceeds Ix58, an I2T fault will occur.  When commanded current levels are below Ix57, Sum will 
decrease, but it will never go below zero. 

Example: With command output limit Ix69=32767 (maximum), integrated current limit Ix57=16384 
(half of maximum), and magnetization current Ix77=0, the motor hits an obstruction, and the command 
output saturates at 32767.  The I2T function will calculate during this time: 

[ ] t75.0Sumt5.001SumSum 222 ∆∆ +=−++=  

Sum will increase at a rate of 0.75 per servo cycle.  At the default servo cycle update rate of 2.25 kHz, 
Sum will increase at a rate of 2250*0.75=1688 per second.  To trip the motor after three seconds of this 
condition, set Ix58 to 1688*3 = 5064. 

When an I2T fault occurs on a motor, PMAC reacts just as for an amplifier fault error.  The offending 
motor is killed, and possibly other motors as set by Ix25.  PMAC sets the amplifier fault motor status bit.  
For an I2T fault, PMAC also sets a separate I2T fault motor status bit.  Both bits are cleared when the 
motor is re-enabled. 

Note 

When PMAC is not commutating a motor with I2T protection, make sure 
magnetization current parameter Ix77 is still set to 0.  In this setup, Ix77 will not 
affect operation, but it will affect I2T calculations. 

Amplifier Enable and Fault Lines 
The use of the amplifier enable (AENA) output and the amplifier fault (FAULTn) input lines for each 
motor are important for safe operation.  Without the use of the enable line, disabling the amplifier relies 
on precise zero offsets in the PMAC analog output and the amplifier's analog input. 

Without the use of the fault line, PMAC may not know when an amplifier has shut down and may not 
take appropriate action. 

If either the +5V supply for the PMAC computational section, or the +15V analog supply is lost, the 
amplifier will be disabled automatically, because the output transistor will go into its non-conducting 
state.  To get this failsafe protection without connecting a signal of this polarity directly to the amplifier, 
use intermediate circuitry to change the signal format.  With the alternate sourcing drivers, the high-true 
enable polarity provides better failsafe protection. 

For more details, refer to the Error! Reference source not found. and Error! Reference source not 
found. sections of this manual. 
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Note 

With the default sinking drivers for the amplifier enable signals, using the low-true 
enable polarity (low voltage — conducting — is enable; high voltage — non-
conducting — is disabled) provides better failsafe protection against loss of power-
supply.   

Watchdog Timer 
PMAC has an on-board dead-man (or watchdog) timer.  This subsystem provides a fail-safe shutdown to 
guard against software malfunction.  To keep it from tripping the hardware circuit for the watchdog timer 
requires that two basic conditions be met.  First, it must see a DC voltage greater than 4.75V.  If the 
supply voltage is below this value, the circuit's relay will trip and the card will shut down.  This prevents 
corruption of registers due to insufficient voltage.  The second necessary condition is that the timer must 
see a square wave input (provided by the PMAC software) of a frequency greater than 25 Hz.  In the 
foreground, the Real Time Interrupt routine sets the signal and then the background routine resets it.  If 
the card, for whatever reason, due either to hardware or software problems, cannot set and clear this bit 
repeatedly at this frequency or higher, the circuit's relay will trip and the card will shut down. 

When the timer trips, line F2LD/ on the JPAN connector, and (if E28 is connected 2-3) line FEFCO/ on 
the JMACH connector(s) are taken low, the DAC outputs are forced to zero, and the AENA lines are 
forced to the disable state.  In addition, a level 3 (IR3) interrupt is triggered on the PMAC-PC's 
Programmable Interrupt controller (PIC), and a level 5 (IR5) interrupt is triggered on the PMAC-STD's 
PIC.  The red LED on the CPU section of the board is turned on. 

It is important to shut down your power circuitry if the PMAC watchdog timer trips.  The FEFCO/ output 
on the JMACH1 connector is useful for this purpose.  It is an open collector output referenced to AGND 
that goes low (100 mA sinking capability) when the watchdog trips.  It may also trip on the loss of +5V 
power if the loss is slow enough that the watchdog trips from under voltage before complete shutdown.  
This use must be evaluated on an individual system to see if it is reliable. 

Once the watchdog timer has tripped, power to the PMAC must be cycled off and on, or the INIT/ line on 
JPAN must be taken low, then high, to restore normal functioning. 

Hardware Stop Command Inputs 
PMAC has hardware inputs that can stop a move or a program with user-set decelerations.  The Abort 
input stops motion of all axes in the selected coordinate system(s), as determined by the motor/system 
select inputs, starting immediately, and with each motor decelerating at a rate set by Ix15.  The Hold input 
performs the same function, except that the axes are decelerated at rates such that the desired multi-axis 
path is maintained during deceleration.   

These dedicated inputs are on the PMAC control panel connector (JPAN; J2).  Which coordinate system 
they act on is determined by the binary number produced by the four low-true input lines FPD0/ (LSBit), 
FPD1/, FPD2/, and FPD3/ (MSBit).  A value of zero (all high) disables the functions; values of 1 through 
8 select the numbered coordinate system. 

Host-Generated Stop Commands 
These functions and several others also can be performed from the host with one- or two-character 
commands.  For instance, <CTRL-A> performs the same function as the Abort input with all coordinate 
systems selected, and A aborts the software-addressed coordinate system.  <CTRL-O> holds all 
coordinate systems, and H holds the software-addressed coordinate system.  In addition <CTRL-Q> stops 
all programs at the end of the upcoming move, and Q stops the program of the software-addressed 
coordinate system.  <CTRL-K> disables all motors immediately, and K disables the software-addressed 
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motor (if the motor is in a coordinate system that is running a motion program, an Abort command should 
be issued before the K command. 

Any of these commands may be issued from within a PMAC program, using the COMMAND{command} 
or the COMMAND^{letter} syntax.  However, a motor-kill (K) command for a motor in the coordinate 
system will be rejected automatically when issued from within a motion program running in that 
coordinate system. 

Program Checksums 
PMAC continually computes the checksum of its internal program (firmware) as a background task.   
Each time it has computed the checksum, it compares this value to a reference register in memory 
(X:$07B1) that has been manually entered with the correct value.  PMACs shipped from the factory are 
preloaded with the correct reference value for that firmware version at the factory.   

Firmware Checksum 
If PMAC detects a mismatch between its calculated checksum and the reference checksum, it sets global 
status bits (bits 12 and 13 of X:$0003 — accessible with the ??? command) and stops performing any 
checksum operations.  This leaves the calculated value frozen in the running checksum register X:$0794.  
PMAC does take any other action in the event of a firmware checksum error; it is up to the host or a 
PMAC PLC program to decide what action to take. 

When a PMAC is upgraded to new firmware by replacement of the PROM IC in standard CPU sections 
or downloading of new firmware into the flash EEPROM IC in Option CPU sections, the reference 
checksum value will be wrong initially for the new firmware.  The easiest way of getting the proper 
reference checksum value is to re-initialize the card with a $$$*** command, which automatically loads 
the firmware's checksum value into the reference register.  To make this change permanent, the SAVE 
command should be issued before a power-off/reset of PMAC. 

To update the reference checksum value without re-initializing the card, it is possible to utilize the fact 
that the running checksum register X:$0794 has the last calculated value frozen in it when there is a 
mismatch.  Therefore, the proper checksum value for the new version can be read with the command 
RHX:$0794, and the returned value can be written to the reference register X:$07B1. 

User-Program Checksum 
PMAC continually computes the checksum of the fixed user program buffers as a background task.  Each 
time it has computed the checksum, it compares this value to the checksum value that was computed the 
last time one of these buffers was closed. 

If PMAC detects a mismatch between these two checksums, it sets a global status bit (bit 13 of X:$0003 
accessible with ???) and stops performing any program checksum operations (communications 
checksum is independent).  It does not shut down operation automatically.  It is up to the host or a PMAC 
PLC program to decide what action to take if there is a checksum error. 

Communications Data Integrity Features 
PMAC provides a variety of techniques for ensuring valid transmission of data, including serial parity 
checking, framing error checking, serial full-duplex communications, and bi-directional checksum 
computation on both serial and bus communications.  For more details on how these techniques work, 
refer to the Writing a Host Communications Program section in this manual. 
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BASIC MOTOR MOVES 
Commanding Some Basic Moves for the Motor 
Once the motor is defined and basically working, command some basic moves for the motor.  Jogging 
commands allows the motor to make simple moves, independent of other motors, without writing a 
motion program.  Use these moves for development, diagnostics, and debugging, but also use them in the 
actual application. 

Another type of simple motor move is the homing search move.  This is basically a jog-until-trigger type 
of move, where PMAC commands the motor to move until it sees a pre-defined trigger.  It then brings the 
motor to a stop and returns to the trigger position (possibly with an offset), and sets the motor position to 
zero.  A homing search move should be performed when it is not known where home position is.  If there 
is an incremental position sensor, the location is not known on power-up.  Therefore, the homing search 
move is typically the first move done in this type of system. If the home position is known, to return to 
that position, there is no need to do a homing search move; simply command a move to the zero position 
(e.g., J=0 or X0) 

The trajectories for jogging and homing moves are essentially the same as for linear blended program 
moves.  The differences are that the move parameters must be specified by I-variables, and that the moves 
themselves are started by on-line commands, not by motion programs.  These moves are specified directly 
to the motor, specified by number, rather than the axis, specified by letter.  The moves are described in 
unscaled units (all based on counts and milliseconds). 

Jogging Move Control 
Jog Acceleration 
Jog/home acceleration time is specified by Ix20 for motor x, and the S-curve time by Ix21.  If Ix20 is less 
than two times Ix21, the acceleration time used will be twice Ix21.  The acceleration limit for jog/home 
moves is set by Ix19 (in counts/msec2).  If Ix20 and Ix21 are so small that Ix19 would be exceeded, Ix19 
controls the acceleration time (without changing the profile shape).  To always specify the acceleration by 
rate instead of time, simply set the acceleration time parameters small enough that the limiting 
acceleration rate parameter is always used. 

To specify the acceleration by rate, do not set both acceleration time parameters Ix20 and Ix21 to zero.  
This will cause a division-by-zero error in the move calculations that could cause erratic movement.  The 
minimum acceleration time setting should be Ix20=1 and Ix21=0. 

Jog Speed 
Jogging speed is specified by Ix22, which is a magnitude of the velocity, in counts per millisecond.  
Direction is specified by the jog command itself.   

Jog Commands 
The commands to jog a motor are on-line (immediate) commands that are motor-specific; they act on the 
currently addressed motor. 

A jog command to a motor will be rejected if the motor is in a coordinate system currently executing a 
motion program, even if the motion program is not commanding that motor to move.  PMAC will report 
ERR001 if I6 is set to 1 or 3. 
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Indefinite Jog Commands 
J+ commands an indefinite positive jog for the addressed motor; J- commands an indefinite negative 
jog; J/ commands an end to the jog, leaving the motor in position control after the deceleration.  It is 
possible for the J/ command to leave the commanded position at a fractional count, which can cause 
dithering between the adjacent integer count values.  If this is a problem, the J! command can be used to 
force the commanded position to the nearest integer count value. 

Jogging To A Specified Position 
Jog commands to a specified position, or of a specified distance, can be given.  J= commands a jog to the 
last pre-jog position; J={constant} commands a jog to the (unscaled) position specified in the 
command; J=={constant} commands a jog to the (unscaled) position specified in the command and 
makes that position the pre-jog position; J^{constant} commands a jog of the specified distance from 
the actual position at the time of the command (J^0 can be useful to take up remaining following error); 
J:{constant} commands a jog of the specified distance from the commanded position at the time of 
the command. 

Jog Moves Specified By A Variable 
Jogging moves to a position or of a distance specified by a variable are possible.  Each motor has a 
specific register (L:$082B for motor 1, L:$08EB for motor 2, etc.) that holds the position or distance to 
move on the next variable jog command.  This register contains a floating-point value scaled in encoder 
counts.  It should be accessed with an L-format M-variable.  The J=* command causes PMAC to use this 
value as a destination position.  The J^* command causes PMAC to use the value as a distance from the 
actual position at the time of the command.  The J:* command causes PMAC to use the value as a 
distance from the commanded position at the time of the command. 

Each time one of these commands is given, the acceleration and velocity parameters at that time control 
the response to the command.  To change speed or acceleration parameters of an active jog move, change 
the appropriate parameter(s), then issue another jog command. 

Jog-Until-Trigger 
The jog-until-trigger function permits a jog move to be interrupted by a trigger and terminated by a move 
relative to the position at the time of the trigger.  It is similar to a homing search move, except that the 
motor zero position is not altered, and there is a specific destination in the absence of a trigger. 

The jog-until-trigger function for a motor is specified by adding a ^{constant} specifier to the end of 
a regular definite jog command for the motor, where this {constant} is the distance to be traveled 
relative to the trigger position before stopping, in encoder counts.  It cannot be used with the indefinite 
jog commands J+ and J- . 

This makes the jog command for a jog-until trigger something like J=10000^100 , J=*^-50 or 
J:50000^0.  The value before the ^ is the destination position or distance (depending on the type of jog 
command) to be traveled in the absence of a trigger.  If this first value is represented by a * symbol, 
PMAC looks in a pre-defined register for the position or distance.  The second value is the distance to be 
traveled relative to the position at the time of the trigger.  This value is always expressed as a distance, 
regardless of the type of jog command.  Both values are expressed in encoder counts.  The trigger 
condition for the motor is set up just as for homing search moves: 

• Ix03 bit 17 specifies whether input flags are used to create the trigger, or the warning following error 
limit status bit is the trigger (torque-limited triggering): 0=flags, 1=error status 

• If input flags are to create the trigger, Ix25 specifies the flag register. 
• If input flags are to create the trigger, Encoder/Flag I-variables 2 and 3 for this set of flags specify 

which edges of which signals will cause the trigger. 
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• Ix03 bit 16 specifies whether the hardware-captured counter value is used as the trigger position — 
suitable for incremental encoder signals, real or simulated — or the software-read position is used 
instead — suitable for other types of feedback (0=hardware, 1=software).  The software-read position 
must be used if the following error status is used for the trigger. 

PMAC will use the jog parameters Ix19-Ix22 in force at the time of the command for the pre-trigger 
move, and the values of these parameters in force at the time of the trigger for the post-trigger move. 

The captured value of the sensor position at the trigger is stored in a dedicated register if later access is 
needed.  The units are in counts; for incremental encoders, they are relative to the power-up/reset 
position. 

PMAC sets the motor home-search-in-progress status bit (bit 10 of the first motor status word returned on 
a ? command) true (1) at the beginning of a jog-until-trigger move.  The bit is set false (0) either when the 
trigger is found, or at the end of the move.   

PMAC also sets the motor trigger move status bit (bit 7 of the second motor status word returned on a ? 
command) true at the beginning of a jog-until-trigger move, and keeps it true at least until the end of the 
move.  If a trigger is found during the move, this bit is set false at the end of the post-trigger move; 
however, if the pre-trigger move finishes without finding a trigger, the bit is left true at the end of the 
move.  Therefore, this bit can be used at the end of the move to tell whether the trigger was found 
successfully or not.  The motor desired-velocity-zero status bit can be used to determine the end of the 
move. 
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Homing Search Move Control 
Homing Acceleration 
The acceleration for homing search moves is controlled by the same parameters (Ix19, Ix20, and Ix21) as 
for jogging moves.  These are described in the previous section. 

Homing Speed 
Homing speed and direction are specified by Ix23.  If Ix23 is greater than zero, the homing search move 
will be positive.  If it is less than zero the move will be negative.  The magnitude of Ix23 controls the 
speed of the move (in counts/msec). 

Home Trigger Condition 
The PMAC homing search moves utilize the hardware position capture feature built in to the DSPGATE 
IC.  Because no software action is required to do the actual capture, it is incredibly fast and accurate 
(delay less than 100 nsec).  This means that the capture is fully accurate regardless of motor speed, so 
there is no need to slow down the homing move to get an accurate capture. 

Specify Flag Set 
In the basic setup of the motor, Ix25 specifies which set of flags (associated with one of the encoder 
counters) is used for that motor.  It is important that the flag number match the position encoder number 
for the motor (e.g. if using ENC1 as the position-loop feedback, use Flags1 — HMFL1, +/-LIM1, 
FAULT1 — for the flags, and CHC1 as the encoder index channel) in order to make use of the PMAC 
accurate hardware position capture feature. 

Software Capture Option 
If not using quadrature encoder feedback for the position loop, but a homing search move still needs to be 
done, set bit 16 of the position-loop feedback address parameter Ix03 to 1 to tell PMAC that it cannot use 
the hardware capture feature, so it must use a software capture technique.  For example, if the address for 
Ix03 is $0724, Ix03 should be set to $10724 for the software capture of home position. 

When software capture is used, there is a potential delay between the actual trigger and the PMAC 
position capture of several milliseconds.  This can lead to inaccuracies in the captured position; the speed 
of the motor at the time of the trigger must be kept low enough to achieve an accurate enough capture.  A 
two-step procedure with a fast, inaccurate capture followed by a slow, accurate capture is commonly used 
in these types of systems. 
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Figure 22 Homing Search Move Trajectory 

Trigger Signal(s) & Edge(s) 
Once the set of flags for the motor have been specified with Ix25, use Encoder/Flag I-variable 2 (I902, 
I907, etc.) to tell PMAC whether to use a flag, the index channel, or both, as the capture trigger, and 
which edge of the flag and/or the index channel to use. 

Next use Encoder/Flag I-variable 3 (I903, I908, etc.) to specify which of the four flags (HMFLn, +LIMn, 
-LIMn, FAULTn) is to use for the capture.  If using a limit or a fault flag for home capture, disable the 
normal function of that input by setting high bits of Ix25, at least for the duration of the homing search 
move. 

Torque-Mode Triggering 
Normally, the trigger condition for homing search moves, jog-until-trigger moves, and motion program 
move-until-trigger moves is an input flag signal transition.  Sometimes it is desired that a trigger occur 
when an obstruction such as a hard-stop is encountered.  To support this type of functionality, PMAC 
permits triggering on a warning following error condition instead of an input flag.  This is sometimes 
called torque-mode triggering, because it effectively triggers on a torque level (except for velocity-mode 
amplifiers) because output torque command is proportional to following error.  It is also called a torque-
limited mode, because it provides an easy way to create moves that are limited in torque, and that stop 
when the torque limit is reached. 

To enable this torque-mode triggering, set bit 17 of the position-loop feedback address I-variable Ix03 to 
1.  Also, Bit 16 of Ix03 should be set to 1 to tell PMAC to use the software-read position on a capture 
instead of the hardware-latched position, because there is no input signal to latch the position in this 
mode.  Bits 0-15 contain the actual address of the feedback.  For example, the default value of I103 is 
$0720, specifying the address of the first entry in the encoder conversion table, and specifying signal-
based triggering.  If I103 is changed to $30720, the same register is used for feedback, but torque-mode 
triggering is specified. 

In this mode, the trigger for a homing search move or a move-until-trigger is a true state of the warning 
following error status bit for the motor.  The warning following error magnitude for the motor is set by 
Ix12, with units of 1/16 of a count.  When PMAC detects this transition, it will read the present feedback 
position as the trigger position, then move relative to this position.  In a homing search move, the relative 
distance is specified by Ix26, in units of 1/16 count.  In a jog-until-trigger, the distance is specified by the 
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second value in the jog command — the value after the ^ arrow — in units of counts.  In a motion 
program move-until-trigger, the distance is specified by a second value in the axis command (the value 
after the ^ arrow) in user axis units. 

In many cases in these types of moves, the Ix69 command output should be set to a lower value 
representing the torque or force limit to ensure that this limit is not exceeded at any time during the move, 
before or after the trigger. 

Notice that if the warning following error status bit is true at the start of the move, the trigger will occur 
almost immediately. 

Merits of Dual Trigger 
It is common practice to use a combination of a homing switch and the index channel as the home trigger 
condition.  The index channel of an encoder, while precise and repeatable, is not unique in most 
applications, because the motor can travel more than one revolution.  Typically, the homing switch, while 
unique, is not extremely precise or repeatable.  By using a logical combination of the two, uniqueness 
from the switch and precision and repeatability from the index channel can be achieved.  In this scheme, 
the homing switch is effectively used to select which index channel pulse is used as the home trigger. 

Although the homing switch does not need to be placed accurately in this type of application, it is 
important that its triggering edge remain safely between the same two index channel pulses.  Also, the 
homing switch pulse must be wide enough to always contain at least one index channel pulse. 

Action on Trigger 
In the homing search move, as soon as the PMAC firmware recognizes that the hardware trigger has 
occurred, it takes several actions.  It reads the position at the time of capture (usually the hardware capture 
register) and uses it and the Ix26 home offset parameter to compute the new motor zero position.  As soon 
as this is done, reported positions are referenced to this new zero position (plus or minus any axis offset in 
the axis definition statement). If the axis definitions is #1->10000X+3000, the home position will be 
reported as 3000 counts.   

If software overtravel limits are used (Ix13, Ix14 not equal to zero), they are re-enabled at this time after 
having been disabled automatically during the search for the trigger.  The trajectory to this new zero 
position is then calculated, including deceleration and reversal if necessary.  The motor will stop under 
position control with its commanded position equal to the home position.  If there is a following error, the 
actual position will be different by the amount of the following error.  

Note  

If a software limit is too close to zero, the motor may not be able to stop and 
reverse before it hits the limit. 

Home Command 
The homing search move can be executed either through an on-line command (which can be given from a 
PLC program using the COMMAND"" syntax) or a motion program statement. 

On-Line Command 
A homing search move can be initiated with the on-line motor-specific command HOME (short form HM).  
This is simply a command to start the homing search; PMAC provides no automatic indication that the 
move is completed, unless the system is set up to recognize the in-position (IPOS) interrupt. 
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Monitoring for Finish 
If monitoring the motor from the host or from a PLC program to see if it has finished the homing move, it 
is best to look at the home complete and desired velocity zero motor status word, accessed either with the 
? command, or with M-variables.  The home complete bit is set to zero on power-up/reset; it is also set to 
zero at the beginning of a homing search move, even if a previous homing search move was completed 
successfully.  It is set to one as soon as the trigger is found in a homing search move, before the motor has 
come to a stop.   

The home search in progress bit simply is the inverse of the home complete bit during the move: it is 1 
until the trigger is found, then 0 immediately after.  Therefore, the monitoring should also look for the 
desired velocity zero status bit to become 1, which will indicate the end of the move. 

Monitoring for Errors 
A robust monitoring algorithm will look also for the possibility that the homing search move could end in 
an error condition.  Often this is just part of the general error monitoring that is done at all times, looking 
for overtravel limits, fatal following errors, and amplifier faults.  If an error does occur during the homing 
move, it is important to distinguish between one that occurs before the trigger has been found, and one 
that occurs after.  If the error occurs after, PMAC knows where the home position is, and the homing 
search does not need to be repeated.  Once the error cause has been fixed, the motor can simply be moved 
to the home position with a command such as J=0. 

Buffered Program Command 
The homing search move can also be commanded from within a motion program with the HOMEn 
command, where n is the motor number.  This command specifies a motor; unlike other motion program 
commands that specify an axis move.  In a motion program, the PMAC automatic program sequencing 
routines monitor for the end of the move.  When the move is successfully completed, program execution 
continues with the next command. 

Multiple homing moves can be started together by specifying a list or range of motor numbers with the 
command (e.g., HOME1,3 or HOME2..6).  Further program execution will wait for all of these motors to 
finish their homing moves.  Separate homing commands, even on the same line (e.g., HOME1 HOME2) 
will be executed in sequence, with the first finishing before the second starts.  It is not possible to execute 
partially overlapping homing moves from a single motion program. 

Note carefully the difference in syntax between the on-line command and the buffered command.  The 
on-line command is simply HOME or HM, and it acts on the currently addressed motor, so the motor 
number must be specified in front of the command (e.g. #1HM).  In the buffered command, the motor 
number is part of the command, following immediately after HOME or HM letters (e.g. HM1). 

Homing from a PLC Program 
PMAC PLC programs can command homing search moves by giving on-line commands with the 
COMMAND"" statement (e.g. COMMAND"#1HM").  These commands simply start the homing search 
move; code must be written to monitor for finishing if that is desired.  The motor number must be 
specified in the specific command string, or with the ADDRESS#n statement; without this statement,  
motor addressing is not modal within PLC programs. 
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Motion vs. PLC Program Homing 
Table 11-1 summarizes the differences between homing using Motion programs and PMAC PLC 
programs. 

Motion vs. PLC Program Homing 
Motion Programs PLC Programs 

Program execution point stays on the line containing the 
Home command until the homing move is finished. 

The PLC does not monitor for the start and end of the 
homing move automatically. 

Home command can be combined with programmed 
axis moves. 

Axis motion can only be performed through Jog 
commands.  

The C.S. must be ready to run a motion program. The C.S. does not need to be ready to run a motion 
program. 

Can only home motors defined in the C.S. running the 
program. 

Can home any motor not defined in a C.S. running a 
program. 

Motors can be homed simultaneously, one after another, 
or any combination of the two. 

Motors can be homed in any order.  This includes 
starting one motor in the middle of another motor's 
home move. 

The motion program must be started by an on-line 
command, a PLC program, or another motion program. 

The PLC can be started by an on-line command, a PLC 
program, another motion program, or automatically at 
power-up or reset. 

Zero-Move Homing 
To declare the current position the home position without commanding any movement, use the HOMEZ 
(on-line) or HOMEZn (motion program) command.  These are like the HOME command, except that they 
immediately take the current commanded position as the home position.  The Ix26 offset is not used with 
the HOMEZ command. 

Note 

If the following error is received when giving the HOMEZ command, the reported 
actual position after the HOMEZ command will not be exactly zero; it will be equal 
to the negative of the following error. 

Homing into a Limit Switch 
It is possible to use a limit switch as a home switch.  However, you must first disable the limit function of 
the limit switch if you want the move to finish normally; if you do not do this, the limit function will 
abort the homing search move.  Even so, the home position has been set; a J=0 command can then be 
used to move the motor to the home position. 

To disable the limit function of the switch, you must set bit 17 of variable Ix25 for the motor to 1.  For 
example if I125 is normally $C000 (the default), specifying the use of +/-LIM1 for motor 1, setting I125 
to $2C000 disables the limit function.   

Note 

The polarity of the limit switches is the opposite of what many people would 
expect.  The -LIMn input should be connected to the limit switch at the positive 
end of travel; the +LIMn input should be connected to the limit switch at the 
negative end of travel. 

It is a good idea to use the home offset parameter Ix26 to bring the home position out of the limit switch, 
so the limits can be re-enabled immediately after the homing search move, without being in the limit. 
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The following examples show two quick routines to do this type of homing.  One uses a motion program 
and the other a PLC program.  The same function could also be done with on-line commands. 
;********* Motion Program Set-up Variables (to be saved) *********** 
CLOSE 
I123=-10 ; Home speed 10 cts/msec negative 
I125=$C000 ; Use Flags1 for Motor 1 (limits enabled) 
I126=32000 ; Home offset of +2000 counts 
 ; (enough to take you out of the limit) 
I902=3 ; Capture on rising flag and rising index 
I903=2 ; Use +LIM1 as flag (negative end switch) 
;************** Motion program to execute routine ****************** 

OPEN PROG 101 CLEAR 
I125=$2C000 ; Disable +/-LIM as limits 
HOME1     ; Home #1 into limit and offset out of it 
I125=$C000    ; Re-enable +/-LIM as limits 
CLOSE     ; End of program 
;************** PLC Set-up Variables (to be saved) ***************** 

CLOSE 

I123=-10 ; Home speed 10 cts/msec negative 
I125=$C000 ; Use Flags1 for Motor 1 (limits enabled) 
I126=32000 ; Home offset of +2000 counts 
 ; (enough to take you out of the limit) 
I902=3 ; Capture on rising flag and rising index 
I903=2 ; Use +LIM1 as flag (negative end switch) 
M133->X:$003D,13,1 ; Desired Velocity Zero bit 
M145->Y:$0814,10,1 ; Home complete bit 
;************** PLC program to execute routine ********************* 

OPEN PLC 10 CLEAR 
I125=$2C000   ; Disable +/-LIM as limits 
CMD"#1HM"    ; Home #1 into limit and offset out of it 
WHILE (M145=1)    ; Waits for Home Search to start 
ENDWHILE 
WHILE (M133=0)    ; Waits for Home motion to complete 
ENDWHILE 
I125=$C000    ; Re-enable +/-LIM as limits 
DIS PLC10 ; Disables PLC once Home is found 
CLOSE ; End of PLC 

Multi-Step Homing Procedures 
A homing procedure may be required that cannot be executed with a single PMAC homing move.  In this 
case, use two (or possibly more) homing search moves, changing the move parameters in between.  
Although this can be done with a sequence of on-line commands, it is probably easier to create a small 
motion program to execute the sequence. 

Which Direction to Home? 
The most common of these situations is the case in which it is not known on which side of the home 
trigger when powering-up.  In this case, move into one of the limit switches to make sure the position is at 
one end of travel (this can be done by homing into the limit, much as in the above example).  Then do a 
homing move the other direction into the real home trigger.  A sample Motion Program routine that does 
this is: 
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CLOSE OPEN PROG 102 CLEAR 
I223=10  ; Home speed 10 cts/msec positive direction 
I225=$2C004 ; Disable +/-LIM2 as limits 
I226=0 ; No home offset 
I907=2 ; Capture on rising edge of a flag 
I908=1 ; Use -LIM2 as flag (positive end limit!) 
HOME2 ; Home into limit 
I223=-10 ; Home speed 10 cts/msec negative direction 
I225=$C004 ; Re-enable +/-LIM2 as limits 
I907=11 ; Capture on flag low and index channel high 
I908=0 ; Use HMFL2 (home flag) as trigger flag 
HOME2 ; Do actual homing move 
CLOSE 

A sample PLC Program routine that does this is: 
CLOSE  
M233->X:$0079,13,1 ; Desired Velocity Zero bit 
M245->Y:$08D4,10,1 ; Home complete bit 
OPEN PLC 11 CLEAR 
I223=10 ; Home speed 10 cts/msec positive direction 
I225=$2C004 ; Disable +/-LIM2 as limits 
I226=0 ; No home offset 
I907=2 ; Capture on rising edge of a flag 
I908=1 ; Use -LIM2 as flag (positive end limit!) 
CMD"#2HM" ; Home into limit 
WHILE (M245=1) ; Waits for Home Search to start 
ENDWHILE 

WHILE (M233=0) ; Waits for Home motion to complete 

ENDWHILE 
I223=-10 ; Home speed 10 cts/msec negative direction 
I225=$C004 ; Re-enable +/-LIM2 as limits 
I907=11 ; Capture on flag low and index channel high 
I908=0 ; Use HMFL2 (home flag) as trigger flag 
CMD"#2HM"  ; Do actual homing move 
WHILE (M245=1) ; Waits for Home Search to start 
ENDWHILE 
WHILE (M233=0) ; Waits for Home motion to complete 
ENDWHILE 
DIS PLC11 ; Disables PLC once Home is found 
CLOSE ; End of PLC 
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Already Into Home? 
A similar situation occurs when it is not known on power-up whether or not it is positioned already into 
the home trigger.  Here, the easiest solution is to write a program that evaluates this condition; if it is in 
the trigger, it moves out before doing the real homing. 
;*************** Motion Program Set-up variables (to be saved) ******* 
CLOSE 
M320->X:$C008,20,1 ; Variable for HMFL3 input 
I325=$C008 ; Use Flags3 for Motor 3 
;************** Motion program to execute routine ********************* 
OPEN PROG 103 CLEAR 
IF (M320=1) ; Already in trigger? 
  I323=10 ; Home speed 10 cts/msec positive direction 
  I326=1600 ; Home offset +100 counts (to make sure clear) 
  I912=11 ; Capture on falling flag and rising index 
  I913=0 ; Use HMFL3 as flag 
  HOME3 ; "Home" out of switch 
ENDIF 

I323=-10 ; Home speed 10 cts/msec negative direction 
I326=0 ; No home offset 
I912=3 ; Capture on rising flag and rising index 
I913=0 ; Use HMFL3 as flag 
HOME3 ; Do actual homing move 
CLOSE ; End of program 

;***************PLC Set-up variables (to be saved) ******************** 
CLOSE  
M320->X:$C008,20,1 ; Variable for HMFL3 input 
I325=$C008 ; Use Flags3 for Motor 3 
M333->X:$00B5,13,1 ; Desired Velocity Zero bit 
M345->Y:$0994,10,1 ; Home complete bit 
M350->D:$009E ; Present Desired Velocity 

;**************** PLC program to execute routine ********************* 
OPEN PLC 12 CLEAR 
IF (M320=1) ; Already in trigger? 
  I323=10 ; Home speed 10 cts/msec positive direction 
  I326=1600 ; Home offset +100 counts (to make sure clear) 
  I912=11 ; Capture on falling flag and rising index 
  I913=0 ; Use HMFL3 as flag 
  CMD"#3HM" ; "Home" out of switch 
  WHILE (M345=1) ; Waits for Home Search to start 
  ENDWHILE 
  WHILE (M333=0) ;Waits for Home motion to complete 
  ENDWHILE 
ENDIF 
I323=-10 ; Home speed 10 cts/msec negative direction 
I326=0 ; No home offset 
I912=3 ; Capture on rising flag and rising index 
I913=0 ; Use HMFL3 as flag 
CMD"#3HM" ; Do actual homing move 
WHILE (M345=1) ; Waits for Home Search to start 
ENDWHILE 
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WHILE (M333=0) ; Waits for Home motion to complete 
ENDWHILE 
DIS PLC12 ; Disables PLC once Home is found 
CLOSE ; End of program 

Storing the Home Position 
PMAC stores the encoder position that was captured during the latest homing search move for the motor 
automatically.  This value is kept in the Motor Encoder Position Offset Register [Y:$0815 (Motor 1), 
Y:$08D5 (Motor 2), etc.], which is set to zero on power-up/reset for motors without absolute power-on 
position.  If Ix10>0 to specify an absolute power-on position read from a resolver so no homing is 
necessary, this register holds the negative of the power-on resolver position.  In either case, it contains the 
difference between the encoder-counter zero position (power-on position) and the motor zero (home) 
position, scaled in counts.   

Note 

Prior to V1.14 firmware, this value could be obtained by using the PLC program 
HOMOFFST.PMC.  Starting in V1.14, PMAC stores this value automatically. 

Uses 
There are two main uses for this register.  First, it provides a reference for using the encoder position-
capture and position-compare registers.  These registers are referenced to the encoder zero position, which 
is the power-up position, not the home (motor zero) position.  This register holds the difference between 
the two positions.  This value should be subtracted from encoder position (usually from position capture) 
to get motor position, or added to motor position to get encoder position (usually for position compare). 

Example 
To move an axis until a trigger is found, then convert the captured encoder position to a motor position, 
use the following M-variable definitions: 
M103->X:$C003,24,S ; Encoder 1 position-capture register 
M117->X:$C000,17 ; Encoder 1 position-capture flag 
M125->Y:$0815,24,S ; Motor 1 encoder position offset register 

Now use a motion program segment like the following: 
INC ; Incremental moves 
TM10 TA10 ; Move segment time 10 msec 
WHILE (M117=0) ; While no trigger to capture position 
  X20 ; Command next move segment 
ENDWHILE 
P103=M103-M125 ; Read captured position; subtract offset to 
 ; get motor position at trigger 

The second use for this register is to determine whether the encoder counter has lost any counts.  This can 
be done by performing a second homing search move after an operation, and comparing the contents of 
the register after the second homing search move to the contents after the first homing search move. 
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Open-Loop Moves 
Open-loop moves, as their name implies, do not do closed-loop position control.  They open up the servo 
loop and just put commands of the specified magnitude on the outputs.  Typically, these are used for 
diagnostic purposes, but they can also be used in the actual applications. 

These moves are executed using the motor-specific O{constant} on-line command, where 
{constant} represents the magnitude of the output as a percentage of Ix69, the maximum output 
parameter.  This command may not be part of a motion program, and it may not be given to a motor when 
that motor's coordinate system is executing a motion program, even if it is not moving that motor.  

If the motor is not commutated by PMAC, this command creates a constant DC voltage on the single 
DAC output for the motor.  If the motor is commutated by PMAC, this command sets the magnitude of 
the signal that is sinusoidally commutated onto the two DAC outputs for the motor. 

To do a variable O-command, define an M-variable to the filter result register (X:$003A, etc.), command 
an O0 to the motor to put it in open-loop mode, then assign a variable value to the M-variable.  This 
technique will even work on PMAC-commutated motors. 

The PMAC Executive Program tuning section uses the open-loop moves to allow the user to diagnose and 
tune amplifier response. 
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SETTING UP A COORDINATE SYSTEM 
Coordinating Multiple Motions 
Once the motors have been set up and they are well tuned, and doing controlled jogging and homing 
search moves, assemble one or more coordinate systems so that motion programs can be run. 

PMAC has several methods of coordinating multiple motions, whether they are all under the PMAC 
direct control or not.  Depending on needs, one of the coordination strategies below can be implemented. 

What is a Coordinate System? 
A coordinate system in PMAC is a grouping of one or more motors for the purpose of synchronizing 
movements.  A coordinate system (even with only one motor) can run a motion program; a motor cannot.  
PMAC can have up to eight coordinate systems, addressed as &1 to &8, in a very flexible fashion (e.g. 
eight coordinate systems of one motor each, one coordinate system of eight motors, four coordinate 
systems of two motors each, etc.).   

In general, if certain motors should move in a coordinated fashion, put them in the same coordinate 
system.  To have them move independently of each other, put them in separate coordinate systems.  
Different coordinate systems can run separate programs at different times (including overlapping times), 
or even run the same program at different (or overlapping) times. 

A coordinate system must first be established by assigning axes to motors in Axis Definition Statements.  
A coordinate system must have at least one motor assigned to an axis within that system, or it cannot run 
a motion program, even non-motion parts of it.  When a program is written for a coordinate system, if 
simultaneous motions are desired of multiple motors, their move commands are simply put on the same 
line, and the moves will be coordinated. 

What is an Axis? 
An axis is an element of a coordinate system.  It is similar to a motor, but not the same thing.  An axis is 
referred to by letter.  There can be up to eight axes in a coordinate system, selected from X, Y, Z, A, B, C, 
U, V, and W.  An axis is defined by assigning it to a motor with a scaling factor and an offset (X, Y, and 
Z may be defined as linear combinations of three motors, as may U, V, and W).  The variables associated 
with an axis are scaled floating-point values.   

One-to-One Matching 
In the vast majority of cases, there will be a one-to-one correspondence between motors and axes.  That 
is, a single motor is assigned to a single axis in a coordinate system.  Even when this is the case, however, 
the matching motor and axis are not completely synonymous.  The axis is scaled into engineering units, 
and deals only with commanded positions.  Except for the PMATCH function, calculations go only from 
axis commanded positions to motor commanded positions, not the other way around. 

Multiple-Motor Axes 
More than one motor may be assigned to the same axis in a coordinate system.  This is common in gantry 
systems, where motors on opposite ends of the crosspiece are always trying to do the same movement.  
By assigning multiple motors to the same axis, a single programmed axis move in a program causes 
identical commanded moves in multiple motors.  Typically, this is done with two motors, but up to eight 
motors have been used in this manner with PMAC.  Remember that the motors still have independent 
servo loops, and that the actual motor positions will not necessarily be the same. 

Coordinating parallel gantry motors in this fashion is in general superior to using a master/slave technique 
(which can be done on PMAC with the position following feature described in the Synchronizing PMAC 
to External Events section of this manual.  In the master/slave technique, the actual trajectory of the 
master as measured at the encoder, with all of the disturbances and quantization errors, becomes the 
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commanded trajectory for the slave, whose actual trajectory will have even more errors.  The roughness in 
the slave motor's commanded trajectory makes it difficult or impossible to use feedforward properly, 
which introduces a lag.  True, if the master gets a disturbance, the slave will see it and attempt to match it, 
but if the slave gets a disturbance, the master will not see it. 

Care must be taken in the startup and homing of gantry motors that have a tight mechanical linkage.  In 
general, the motors will power up not quite in ideal alignment with each other.  The usual procedure is to 
do a homing search move on one motor with the second motor slaved to it, followed by an offset back out 
far enough that the second motor knows which way it has to go to its home trigger.   

Next the second motor is made the master and is told to do a homing search move with the first motor 
slaved to it.  This will leave the first motor slightly off from its home position; it can now be told to go 
there with just a J=0 command.  The slaving is then turned off, and the motors are then commanded 
identically through joint axis commands. 

Phantom Axes 
An axis in a coordinate system can have no motors attached to it (a phantom axis), in which case 
programmed moves for that axis cause no movement, although the fact that a move was programmed for 
that axis can affect the moves of other axes and motors.  For instance, if sinusoidal profiles are desired on 
a single axis, the easiest way to do this is to have a second, phantom axis and program circularly 
interpolated moves. 

Axis Definition Statements 
A coordinate system is established by using axis definition statements.  An axis is defined by matching a 
motor (which is numbered) to one or more axes (which are specified by letter).   

Matching Motor to Axis 
The simplest axis definition statement is something like #1->X.  This simply assigns motor #1 to the X 
axis of the currently addressed coordinate system.  When an X axis move is executed in this coordinate 
system, motor #1 will make the move.   

Scaling and Offset 
The axis definition statement also defines the scaling of the axis' user units.  For instance, #1->10000X 
also matches motor #1 to the X axis, but this statement sets 10,000 encoder counts to one X-axis user unit 
(e.g., inches or centimeters).  This scaling feature is almost universally used.  Once the scaling has been 
defined in this statement, the axis can be programmed in engineering units without ever needing to deal 
with the scaling again. 

The statement #1->10000X+20000 also sets the axis zero at 20,000 count (2 user unit) distance from 
the motor zero (home position).  This offset is rarely used.  Further, an axis definition statement can 
match a motor to a linear combination of cartesian axes (see section below), which allows for rotation of a 
coordinate system, or orthogonality correction.   
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Axis Types 
An axis can have several attributes, as specified below.  Note that for most axis functions, it does not 
matter what type of axis is used, or what letter is given it.  However, for some features, only particular 
axis names may be used. 

Cartesian Axis 
A Cartesian axis is one that may be put into a grouping of two or three axes so that movement along an 
axis is a linear combination of motion on two or three motors.  X, Y, and Z form one set of Cartesian 
axes; U, V, and W form the other.  In addition, there are several commands (NORMAL, circular move) 
which can reference the X, Y, and Z axes through the use of I, J, and K vectors, respectively. 

To make a cartesian axis a linear combination of several motors, use an extended form of the axis 
definition statement.  For instance, to get a 30o rotation of the axes from the motors with the following 
axis definition statements: 

#1->8660.25X-5000Y 
#2->5000X+8660.25Y 

In this case, a request for a Y-axis (or an X-axis) move would cause both motors #1 and #2 to move. 

Only the X, Y, and Z cartesian axes may be used for the PMAC circular interpolation routines, cutter 
radius compensation routines, and matrix axis transformation routines.  To do circular interpolation on 
other axes, do it through blended short moves and trigonometry in subroutines.  See example program 
CIRCTRY.PMC 

Rotary Axis 
A rotary axis is one that permits rollover, but cannot be assigned to combinations of motors.  A rotary 
axis must be named A, B, or C.  The rollover is technically a motor function, specified by Ix27 for motor 
x, but it can only operate when the motor is assigned to a rotary axis.  Rollover permits the motor to take 
the shortest path around the rotary range when an absolute axis move is specified in a program. 

Feedrate Axis 
A feedrate axis is an axis in a coordinate system that figures into the calculations of a feedrate-specified 
move.  The time for a feedrate-specified move is calculated as the vector distance for the feedrate axes 
divided by the feedrate itself.  If other axes are commanded to move in the same statement, they will be 
linearly interpolated over this same computed time. 

The default feedrate axes are the Cartesian axes X, Y, and Z.  This setting can be changed with the FRAX 
(feedrate axis) command. 

Axis-Motor Position Re-matching 
There is only one type of calculation in which PMAC converts from commanded motor position to 
commanded axis position.  This is in the PMATCH (position-match) function.  This is needed in only a few 
cases. 

First, when a motor function, such as a jog move, open-loop move, or a stop on abort or limit, has 
changed the motor commanded position since the last axis move (or home search move).  In other words, 
the axis does not know where the motor has gone.  In order for the next axis (programmed) move to 
function properly, the axis must be told where it is starting from.  This is what the PMATCH function does. 

Second, if there is an absolute position sensor, the PMATCH function should be used before the first 
programmed move, because the motor will not, in general, power up at zero position (as it does for an 
incremental sensor), and the axis must be given this starting point. 
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The PMATCH function effectively inverts the equations contained in the Axis Definition statements for the 
coordinate system, using motor commanded positions, and solves for axis commanded positions.  If more 
than one motor is assigned to the same axis (e.g. #1->10000X, #2->10000X), the commanded 
position of the lower-numbered motor is used in the PMATCH calculations. 

If variable I14 is equal to 1, the PMATCH function is executed automatically every time motion program 
execution is started (on all R [run] and S [step] commands).  It does not hurt to do a PMATCH function if 
the positions already match, so use the card with I14=1.   
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Figure 23 - PMAC Coordinate Definition 
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What Is Coordinate System Time-Base? 
Each coordinate system has its own time base that helps control the speed of interpolated moves in that 
coordinate system.  The PMAC interpolation routines increment an elapsed-time register every servo 
cycle.  While the true time for the servo cycle is set in hardware for the card (by jumpers E98, E29-E33, 
and E3-E6) and does not change, the value of time added to the elapsed-time register each servo cycle is 
just a number in a memory register.  It does not have to match the true physical time for the cycle. 

The units for the time base register are such that 2
23

 (8,388,608) equals 1 millisecond.  The default value 
for the time-base register is equal to the value of I10.  The factory default value for I10 of 3,713,707 
represents the default physical servo cycle time of 442 microseconds. 

If the value of the time base register is changed from I10, interpolated moves will move at a different 
speed from that programmed.  Many people call this capability feedrate override.  The physical time does 
not change, so servo loop dynamics remain unchanged. 

Each coordinate system has a variable Ix93 that contains the address of the register that the coordinate 
system uses for its time base.  With the default value of Ix93, the coordinate system gets its time base 
information from a register that is set by % commands from the host computer.  A %100 command puts a 
value equal to I10 in this register; a %50 command puts a value equal to I10/2 in this register. 

Regardless of the source of the time base information, a % query command causes PMAC to report back 
the value of the present time base expressed as a percentage of I10. 

Time base information can come from other sources.  The most common alternative to command-sourced 
time base is external frequency-sourced time base, where the time base value is proportional to the 
frequency of a master encoder.  This provides a powerful position-synchronized slaving mechanism that 
is commonly called electronic cam.   
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COMPUTATIONAL FEATURES 
Advanced Computational Features 
PMAC has advanced computational features that permit off-loading of many operations from a host, or 
even stand-alone operation in ways that were not previously possible.  Many arithmetic, logical, and 
transcendental operations can be performed on variables and constants in user programs on board the 
card.   

Computational Priorities 
As a multi-tasking, real-time computer, PMAC has an elaborate prioritization scheme to ensure that vital 
tasks get accomplished when needed, and that all tasks get executed reasonably quickly.  The scheme was 
designed to hide its complexity as much as possible, but also to give some flexibility in optimizing the 
controller for his particular needs.  The tasks at the different priority levels are: 

• Single Character I/O:  Bringing in a single character from, or sending out a single character to, the 
serial port or host port (PC or STD) is the highest priority in PMAC.  This task takes only 200 nsec 
per character, but having it at this high priority ensures that PMAC cannot be outrun by the host on a 
character-by-character basis.  This task is never a significant portion of the PMAC total calculation 
time.  This task does not include processing a full command; that happens at a lower priority (see 
below). 

• Commutation Update:  The commutation (phasing) update is the second highest priority on PMAC.  
For each motor commutated by PMAC, this task takes 3 µsec per update cycle (2 µsec for the 30 
MHz card).  The frequency of this task is determined by the master clock frequency, and jumpers 
E98, E29-E33.  The default update frequency is 9 kHz (110 µsec cycle).  At the default, the 
commutation of each motor takes approximately 3% of the PMAC computational power. 

• Servo Update:  The servo update — computing the new commanded position, reading the new actual 
position, and computing a command output based on the difference between the two — is the third 
highest priority on PMAC.  For each activated motor on PMAC this task takes 30 µsec per update 
cycle (20 µsec for the 30 MHz card) plus about 30 µsec for general servo tasks such as the encoder 
conversion table.  The frequency of this task is determined by the master clock frequency, and 
jumpers E98, E29-E33, E3-E6.  The default update frequency is 2.26 kHz (442 µsec cycle).  At the 
default, the servo update of each motor takes approximately 7% of the PMAC computational power.  
See Closing the Servo Loop section in this manual for details on optimizing this update rate. 

• Real-Time Interrupt Tasks:  The real-time interrupt (RTI) tasks are the fifth highest priority on 
PMAC.  They occur immediate after the servo update tasks at a rate controlled by parameter I8 (every 
I8+1 servo update cycles).  There are two significant tasks occurring at this priority level: PLC 0 and 
motion program move planning. 

• PLC Program 0: PLC 0 is a special PLC program that operates at a higher priority than the other 
PLC programs.  It is meant to be used for only a few tasks (usually a single task) that must be done at 
a higher frequency than the other PLC tasks.  The PLC 0 will execute every real-time interrupt as 
long as the tasks from the previous RTI have been completed.  PLC 0 is potentially the most 
dangerous task on PMAC as far as disturbing the scheduling of tasks is concerned.  If it is too long, it 
will starve the background tasks for time.  The first thing to notice is that communications and 
background PLC tasks will become sluggish.  In the worst case, the watchdog timer will trip, shutting 
down the card, because the housekeeping task in background did not have the time to keep it updated. 
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• Motion Program Move Planning: .Motion program move planning consists of working through the 
lines of a motion program until the next move or dwell command is encountered, and computing the 
equations of motion for this next part of the move sequence.  Every time PMAC starts executing a 
new move, it sets an internal flag indicating it is time to plan the next move in the program. This 
planning occurs at the next RTI. 

• VME Mailbox Processing:  Reading or writing a block of up to 16 characters through the VME 
mailbox registers is the fourth highest priority in PMAC.  The rate at which this happens is controlled 
by the host.  This never takes a significant portion of the PMAC computational power. 

• Background Tasks:  In the time not taken by any of the higher-priority tasks, PMAC will be 
executing background tasks.  There are three basic background tasks: command processing, PLC 
programs 1-31, and housekeeping.  The frequency of these background tasks is controlled by the 
computational load on PMAC: the more high-priority tasks are executed, the slower the background 
tasks will cycle through; and the more background tasks there are, the slower they will cycle through. 

• PLC Programs 1-31: PLC programs 1-31 are executed in background.  Each PLC program executes 
one scan (to the end or to an ENDWHILE statement) uninterrupted by any other background task 
(although it can be interrupted by higher priority tasks).  In between each PLC program, PMAC will 
do its general housekeeping, and respond to a host command, if any. 

• Compiled PLC Programs 1-31: Compiled PLC programs (PLCC programs) 1-31 are executed in 
background.  All enabled PLCC programs execute one scan (to the end or to an ENDWHILE 
statement) starting from lowest numbered to highest uninterrupted by any other background task 
(although it can be interrupted by higher priority tasks).  At power-on\reset PLCC programs run after 
the first PLC program runs. 

• Host Command Response: The receipt of a control character from any port is a signal to PMAC that 
it must respond to a command.  The most common control character is the carriage return (<CR>), 
which tells PMAC to treat all the preceding alphanumeric characters as a command line.  Other 
control characters have their own meanings, independent of any alphanumeric characters received.  
Here PMAC will take the appropriate action to the command, or if it is an illegal command, it will 
report an error to the host. 

• General Housekeeping: Between each scan through each background PLC program, PMAC 
performs its housekeeping duties to keep itself properly updated.  The most important of these are the 
safety limit checks (following error, overtravel limit, fault, watchdog, etc.)  Although this happens at 
a low priority, a minimum frequency is ensured because the watchdog timer will trip, shutting down 
the card, if this frequency gets too low. 

• Priority Level Optimization: PMAC will usually have enough speed and calculation power to 
perform all of the tasks asked of it without having to worry.  Some applications will put a large 
demand on a certain priority level and to make PMAC run more efficiently some priority level 
optimization should be done.   

When PMAC begins to run out of time, problems such as sluggish communications, slow PLC/PLCC 
scan rates, run-time errors, and even tripping the Watchdog timer can occur.  The specific solutions to the 
above symptoms are discussed in the sections of this manual dedicated to those subjects.  The general 
solution to such problems is two-fold.  First, high priority jobs could be slowed down or moved to a lower 
priority position.  Jobs such as the Encoder Conversion Table, PLC/PLCC0, and the Real Time Interrupt 
(RTI) should be evaluated.  Check to see if everything in these jobs is necessary or if some of it could be 
moved to a lower priority or slowed down.   

For example: A 5-axis application might not need Encoder Conversion Table entries 6 to 9, PLC0 could 
maybe be done as PLCC1, or the RTI could be done every fourth or fifth servo cycle. 
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Second is to adjust the jobs at a priority level to give them less emphasis.  Large PLC programs can be 
split into a few shorter PLC programs.  This increases the frequency of housekeeping and 
communications by giving more breaks in PLC scans.  Motion program WHILE(condition)WAIT 
statements could be done as follows: 
WHILE(condition) 
DWELL20 
ENDWHILE  

This will give more time to other RTI jobs such as Move Planning and PLC/PLCC0. 

Numerical Values 
PMAC can store and process numerical values in many forms, with both fixed-point and floating-point 
values.  The Motorola 56000 DSP that acts as the PMAC CPU is a fixed-point processor with built-in 24-
bit and 48-bit arithmetic capability (plus a 56-bit accumulator).  However, the PMAC firmware 
implements a full set of floating-point routines.   

Internal Formats 
The internal servo, interpolation, and commutation routines all operate with fixed-point arithmetic, 24-bit 
and 48-bit,  for maximum speed.  The user programs, motion and PLC, use floating-point arithmetic for 
maximum range and generality.  Even when reading from and/or writing to fixed-point registers, the 
intermediate formats are all floating-point values.  The only exception to this rule is the new compiled 
PLC programs; in a statement containing only L-variables and integer constants, the intermediate format 
is signed 24-bit integer.  Refer to the section on compiled PLCs under the Writing a PLC Program section 
of this manual for more details. 

The general floating-point format is 48 bits long, with a 36-bit mantissa and a 12-bit exponent.  This 
provides a range of +2

+2047
, or +3.233 x 10

+616
, which should provide sufficient range for any foreseeable 

uses on the card. 

Receiving Values 
Constant values sent from the host as part of command lines are sent as ASCII text, either as decimal 
values or hexadecimal values.  Hexadecimal values must be preceded by a $ character; they must be 
unsigned, and they cannot include fractional values.  Decimal values can be positive or negative, and can 
include fractional values.  The PMAC value interpreter does not support exponential notation, and it is 
limited to passing through values in the range +2

+35
, or +3.43 x 10

+10
.  Values outside this range are 

truncated to the maximum or minimum values of the range. 
 



 PMAC User Manual 

13-4 Computational Features 

Comm - Communications Line Processing
    - Servo Interrupt
RTI - Real Time Interrupt Task
* - Start of RTI

CT #1 #2 #3 #4 PLC 0 PLC 1...

Servo RTI Background

CT #1 #2 #3 #4 PLC 1 (cont.) PLC 2...

Servo Background

CT #1 #2 #3 #4 PLC 2 (cont.) PLC 3...

Servo

CT #1 #2 #3 #4 PLC 0 Move Planning ...

Servo RTI

CT #1 #2 #3 #4 Move Planning (cont) PLC 3 (cont) ...

Servo RTI Background

CT #1 #2 #3 #4 PLC 3 (cont) PLC 1 ...

Servo Background

CT #1 #2 #3 #4 PLC 0 PLC 1 (cont) ...

Servo RTI

CT #1 #2 #3 #4
Servo Background

HK

HK Comm

HK

PLC 1 (cont) CommHK

*

*

*

CT - Conversion Table
# n - Motor n Servo Update
HK - Housekeeping

Background

 
Figure 24 PMAC Multitasking Example 
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Examples 
1234 
3 
03    (leading zeros OK) 
-27.656 
0.001 
.001             (leading zero not required) 
$ff00            (interpreted as hexadecimal) 

Reporting Values 
PMAC reports numerical values to the host computer as part of response lines in decimal ASCII text form 
(although address values can be reported in hexadecimal ASCII form if I9=2 or 3 — see the Addresses 
section below).  The value reporter is limited to passing values in the range of +2

+47
, or +1.41 x 10

+14
.  

Values outside of this range are truncated to the maximum or minimum values of the range. 

Addresses 
PMAC uses the Motorola DSP56001 as its processor.  The 56001 has dual 16-bit address spaces (of 24-
bit data) for memory and I/O.  (The I/O in PMAC is memory-mapped; it does not have a separate I/O 
space as the PC does.)  When specifying an address in PMAC, one must state which half of memory (X 
or Y) — or both halves (L) for a long 48-bit word — followed by an optional colon, followed by the 
numerical address itself.  The numerical address is a constant that in the range of 0 - 65535 ($0-$FFFF if 
specified in hex). 

Do not confuse the memory and I/O addresses of PMAC itself with those of the host computer.  Examples 
of legal address specifications are: 

Y:$FFC2  (word containing machine I/O) 
X:1824   (interpolated encoder 1 position) 
X$C003  (captured encoder 1 position) 
Y49155   (DAC1 output value) 

This form of address specification is used particularly in M- variable definitions and direct read (R) and 
write (W) commands.  There are I-variables that specify addresses, but these are usually pre-defined to the 
X or Y space, so all that is needed is the numerical value.  The data-gathering-address I- variables (I21-
I44) use an extra hex digit in front of the numerical value to specify the memory half (see I21 
description).  

Variables 
PMAC has several types of variables.  In PMAC, a variable is specified by a single letter (I, P, Q, or M) 
followed by a number from 0 to 1023.  Each letter denotes a different type of variable, each type with its 
own properties.  The different types share the characteristics that when their name is cited in an 
expression, the current value of the variable is used (reading from them); and values can be assigned to 
them in an equation (writing to them). 

Variable names may not be specified on PMAC; however the Editor in the PMAC Executive Program has 
a substitution (macro) scheme that allows programs to be written using user-defined variable names, but 
changes these names into PMAC-legal variable names during the download process. 
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I-Variables 
I-Variables (initialization, or setup variables) determine the personality of the card for a given application.  
They are at fixed locations in memory and have pre-defined meanings.  Most are integer values, and their 
range varies depending on the particular variable.  There are 1024 I-variables from I0 to I1023, and they 
are organized as follows: 

I0 — I79: General card setup 
I80 — I99: Geared Resolver setup 
I185 — I199: Coordinate System 1 setup 
I200 — I284: Motor #2 setup 
I285 — I299: Coordinate System 2 setup 
... 
I800 — I884: Motor #8 setup 
I885 — I899: Coordinate System 8 setup 
I900 — I979: Encoder 1 - 16 setup 
I980 — I1023: Reserved for future use 

Value Assignment 
Values assigned to an I-variable may be either a constant or an expression.  The commands to do this are 
on-line (immediate) if no buffer is open when sent, or buffered program commands if a buffer is open. 

Examples: 
I120 = 45 
I120 = (I120+P25*3) 

Limited Range 
For I-variables with limited range, an attempt to assign an out-of-range value does not cause an error.  
The value is rolled over automatically to within the range by modulo arithmetic (truncation).  For 
example, I3 has a range of 0 to 3 (four possible values).  The command I3=5 would actually assign a 
value of 5 modulo 4 = 1 to the variable. 

Power-Down Storage 
On PMACs with battery-backed RAM, most of the I-variable values can be stored in a 2K x 8 EEPROM 
IC with the SAVE command.  These values are safe here even in the event of a battery-backed RAM 
failure, so the basic setup of the board is not lost.  After a new value is given to one of these I-variables, 
the SAVE command must be issued in order for this value to survive a power-down or reset. 

The I-variables that are not saved to EEPROM are held in battery-backed RAM.  These variables do not 
require a SAVE command to be held through a power-down or reset, and the previous value is not 
retained anywhere.  These variables are: I19-I44, Ix13, Ix14. 

On PMACs with flash memory backup (those with Option 4A, 5A, or 5B), all of the I-variable values can 
be stored in the flash memory with the SAVE command.  If there is an EEPROM IC on the board, it is not 
used.  After a new value is given to any I-variable, the SAVE command must be issued in order for this 
value to survive a power-down or reset. 

Default values 
Default values for all I-variables are contained in the manufacturer-supplied firmware.  They can be used 
individually with the I{constant}=* command, or in a range with the 
I{constant}..{constant}=* command.  Upon board re-initialization by the $$$*** command 
or by a reset with E51 in the non-default setting, all default settings are copied from the firmware into 
active memory.  The last saved values are not lost; they are just not used.  See the I-variable description 
section for the functions of individual variables. 
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$0000
$00FF
$0100
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$1800
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User Buffer Storage Space

User-Written Servo Storage M-Variable Definitions

Mailbox RegistersVME Setup Registers

 
Figure 25 PMAC Memory Mapping 
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P-Variables 
P-variables are general-purpose user variables.  They are 48-bit floating-point variables at fixed locations 
in the PMAC memory, but with no pre-defined use.  There are 1024 P-variables, from P0 to P1023.  A 
given P-variable means the same thing from any context within the card; all coordinate systems have 
access to all P-variables (contrast Q-variables, which are coupled to a given coordinate system).  This 
allows for useful information passing between different coordinate systems.  P-variables can be used in 
programs for any purpose desired: positions, distances, velocities, times, modes, angles, intermediate 
calculations, etc. 

Array Capabilities 
Array Reading 
It is possible to use a set of P-variables as an array.  To do this when reading from the variables is easy: 
Simply replace the constant specifying the variable number with an expression in parentheses — use the 
({expression}) syntax instead of the P{constant} syntax.  PMAC simply treats this syntax as a 
type of function call, like SIN({expression}). 

Example 
To move in sequence to the positions specified by P101 to P200, you could use a program segment like 
the following. 
F10 
P1=101 ; Array index variable 
WHILE (P1<201) ; Start loop 
X(P(P1)) ; As P1 changes, the destination  
 ; position changes 
    DWELL100 
    P1=P1+1 ; Increment the index 
ENDWHILE 

Array Writing 
Writing to a set of P-variables as an array must be done with indirect addressing techniques.  To set this 
up, first define an M-variable to point to P0 (e.g. M0->L:$1000).  Next, define a second M-variable to 
point to the lowest twelve bits of the first M-variable’s definition word which is in Y-register $BC00 (e.g. 
M10->Y:$BC00,0,12 defines M10 to the low 12 bits of the definition word for M0).  To point to the 
definition word for M1, use Y-register $BC01; for M2, Y:$BC02; for M100, Y:$BC64 (64 hex is 100 
decimal); for M1023, Y:$BFFF. 

Now, by giving a value to the second M-variable, it changes which P-variable the first M-variable points 
to.  In the example, the command M10=5 makes M0 point to variable P5. 

Once the first M-variable has been pointed to a particular P-variable, giving a value to this M-variable 
writes that value into the addressed P-variable.  Continuing the example, the command M0=73 writes a 
value of 73 to P5. 
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Example 
To create a sine table with one entry per degree in P-variables P0 to P359, use the following program 
segment (this assumes the use of M0 and M10 as set up above): 
P1000=0 ; Starting value for array index 
WHILE (P1000<360) ; Loop until done 
  M10=P1000 ; Point M0 to the proper P-variable 
  M0=SIN (P1000) ; Assign the sine value to this P-variable 
  P1000=P1000+1 ; Increment the array index 
ENDWHILE 

Special-Use P-Variable 
If a command consisting simply of a constant value is sent to PMAC, PMAC assigns that value to 
variable P0, unless a special table buffer such as a compensation table or stimulus table has been defined 
but not yet filled — in that case the constant value will be entered into the table.  For example, if the 
command 342<CR> is sent to PMAC, it will interpret it as P0=342<CR>.  This capability is intended to 
facilitate simple operator terminal interfaces.  It does mean, however, that it is not a good idea to use P0 
for other purposes, because it is easy to change this accidentally. 

Q-Variables 
Q-variables, like P-variables, are general-purpose user variables: 48-bit floating-point variables at fixed 
locations in memory, with no pre-defined use.  However, the meaning of a given Q-variable (and hence 
the value contained in it) is dependent on which coordinate system is utilizing it.  This allows several 
coordinate systems to use the same program (for instance, containing the line X(Q1+25) Y(Q2), but to do 
have different values in their own Q variables (which in this case, means different destination points). 

Allotting Q-Variables 
There are a total of 1024 Q-variables. If you are only using a single coordinate system (Coord.Sys. 1 — 
specified as &1), you may use all of these: Q0 to Q1023.  The Q-variables of Coordinate System 2 (&2) 
overlap these:  Q0 of &2 is the same thing as Q512 of &1, and Q511 of &2 is the same thing as Q1023 of 
&1.  (The Q buffer is actually rotary, so Q512 of &2 is the same thing as Q0 of &1, and Q1023 of &2 is 
Q511 of &1.)  Thus, both coordinate systems have 512 unique Q-variables: Q0 to Q511.   

There is no protection against overwriting another coordinate system's Q- variables.  It is the user's 
responsibility to keep Q-numbers within the proper range.   

Coordinate System 3's Q0 is the same thing as the Q256 of &1;  Coordinate System 4's Q0 is the same 
thing as Q256 of &2, and as Q768 of &1.  Q0 of &5 is equivalent to Q128 of &1; Q0 of &6 is equivalent 
to Q128 of &2, and to Q640 of &1; Q0 of &7 is equivalent to Q128 of &3, and to Q384 of &1; Q0 of &8 
is equivalent to Q128 of &4, and to Q896 of &1.  See the table below for clarification. The bold numbers 
denote the sequentially numbered Q-variables that can be used for a coordinate system without overlap 
provided no higher number coordinate systems are used. 
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PMAC Q - Variable Memory Map 

Memory      
Location 

Coord. 
Sys. 1 

Coord. 
Sys. 2 

Coord. 
Sys. 3 

Coord. 
Sys. 4 

Coord. 
Sys. 5 

Coord. 
Sys. 6 

Coord. 
Sys. 7 

Coord. 
Sys. 8 

$1400 0 512 768 256 896 384 640 128 
... ... ... ... ... ... ... ... ... 

$147F 127 639 895 383 1023 511 767 255 
$1480 128 640 896 384 0 512 768 255 

... ... ... ...  ... ... ... ...  ... 
$14FF 255 767 1023 511 127 639 895 383 
$1500 256 768 0 512 128 640 896 384 

... ... ... ... ... ... ... ... ... 
$157F 383 895 127 639 255 767 1023 511 
$1580 384 896 128 640 256 768 0 512 

... ... ... ... ...  ... ... ... ... 
$15FF 511 1023 255 767 383 895 127 639 
$1600 512 0 256 768 384 896 128 640 

... ... ... ... ... ... ... ... ... 
$167F 639 127 383 895 511  1023 255 767   
$1680 640 128 384 896 512  0 256 768 

... ... ... ... ...  ...  ... ...  ... 
$16FF 767 255 511 1023 639  127 383 895 
$1700 768 256 512 0 640 128 384 896 

...  ... ... ... ... ... ... ... ... 
$177F 895 383 639 127 767 255 511 1023 
$1780 896 384 640 128 768 256 512 0 

... ... ... ...  ... ... ... ... ... 
$17FF 1023 511 767 255 895 383 639 127 

Addressing a Q-Variable Set 
How to know which set of Q-variables are working within a command?  It depends on the type of 
command.  When you are accessing a Q-variable from an on-line (immediate) command from the host, 
working with the Q-variable for the currently host-addressed coordinate system (with the &n command) is 
selected. 

When accessing a Q-variable from a motion program statement, the Q-variable belonging to the 
coordinate system running the program is selected.  If a different coordinate system runs the same motion 
program, it will use different Q-variables. 

When accessing a Q-variable from a PLC program statement, the Q-variable for the coordinate system 
that has been addressed by that PLC program with the ADDRESS command is the one working.  Each 
PLC program can address a particular coordinate system independent of other PLC programs and 
independent of the host addressing.  If no ADDRESS command is used in the PLC program, the program 
uses the Q-variables for C.S. 1. 

Array Capabilities 
Array Reading 
It is possible to use a set of Q-variables as an array.  To do this when reading from the variables, simply 
replace the constant specifying the variable number with an expression in parentheses — use the 
({expression}) syntax instead of the Q{constant} syntax.  PMAC simply treats this syntax as a 
type of function call, like SIN({expression}). 
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Example 
To move in sequence to the positions specified by Q51 to Q100, use a program segment like the 
following. 
F10 
P1=51 ; Array index variable 
WHILE (P1<101) ; Start loop 
    X(Q(P1)) ; As P1 changes, the destination  
 ; position changes 

    DWELL100 
    P1=P1+1 ; Increment the index 
ENDWHILE 

Array Writing 
Writing to a set of Q-variables as an array must be done with indirect addressing techniques.  To set this 
up, first define an M-variable to point to Q0 of C.S.1 (e.g. M60->L:$1400).  Next, define a second M-
variable to point to the lowest twelve bits of the first M-variable's definition word which is in Y-register 
$BC3C (e.g. M70->Y:$BC3C,0, 12 defines M70 to the low 12 bits of the definition word for M60).   

To point to the definition word for M0, use Y-register $BC00; for M1, Y:$BC01; for M50, Y:$BC32 (32 
hex is 50 decimal); and for M1023, Y:$BFFF. 

Now, by giving a value to the second M-variable, it changes which Q-variable the first M-variable points 
to.  In the example, the command M70=1024+17 makes M60 point to variable Q17 of C.S.1.   

Q-Pointer Offsets 
Note the offset of 1024 for C.S.1; each coordinate system has its own required offset to make the value in 
the M-variable definition match the Q-variable number for that coordinate system.  The offsets are: 

C.S.1: 1024 C.S.5: 1152 
C.S.2: 1536  C.S.6: 1664 
C.S.3 1280 C.S.7: 1408 
C.S.4 1792 C.S.8: 1920 

Once the first M-variable has been pointed to a particular Q-variable, giving a value to this M-variable 
writes that value into the addressed P-variable.  Continuing our example, the command M60=3.14 
writes a value of 3.14 to Q17 of C.S.1. 

Example 
To create a table of square roots of values from 0.0 to 9.9 in Q-variables Q0 to Q99 of C.S.2, use the 
following program segment, which assumes the use of M60 and M70 as set up above: 
Q100=0 ; Starting value for array index 
WHILE (Q100<100) ; Loop until done 
  M70=1536+Q100 ; Point M60 to the proper Q-variable 
  M60=SQRT (Q100/10) ; Assign square root value to this 
 ; Q-variable 
  Q100=Q100+1 ; Increment array index 
ENDWHILE 
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Special-Use Q-Variables 
Several Q-variables have special uses that need to be watched.  The ATAN2 (two-argument arctangent) 
function uses Q0 as its second argument (the cosine argument) automatically.  The READ command 
places the values it reads following letters A through Z in Q101 to Q126, respectively, and a mask word 
denoting which variables have been read in Q100.  The S (spindle) statement in a motion program places 
the value following it into Q127. 

M-Variables 
To permit easy access to the PMAC memory and I/O space, M-variables are provided.  Generally, a 
definition only needs to be made once, with an on-line command.  On PMACs with battery backup, the 
definition is held automatically.  On PMACs with flash backup, the SAVE command must be used to 
retain the definition through a power-down or reset.   

Define an M- variable by assigning it to a location, and define the size and format of the value in this 
location.  An M-variable can be a bit, a nibble (four bits), a byte (eight bits), 1-1/2 bytes (12 bits), a 
double-byte (16 bits), 2-1/2 bytes (20 bits), a 24-bit word, a 48-bit fixed-point double word, a 48-bit 
floating-point double word, or special formats for dual-ported RAM and for the thumbwheel multiplexer 
port.   

There are 1024 M- variables (M0 to M1023), and as with other variable types, the number of the M-
variable may be specified with either a constant or an expression: M576 or M(P1+20) when read from; 
the number must be specified by a constant when written to. 

M-Variable Definitions. 
The definition of an M-variable is done using the defines-arrow (->) composed of the minus-sign and 
greater-than symbols.  Generally, a definition only needs to be made once, with in an on-line command, 
because it is stored in battery-backed RAM or saved to flash memory.  The M-variable thus defined may 
be used repeatedly. 
An M-variable may take one of the following types, as specified by the address prefix in the definition: 

X: 1 to 24 bits fixed-point in X-memory 
Y: 1 to 24 bits fixed-point in Y-memory 
D: 48 bits fixed-point across both X- and Y-memory 
L: 48 bits floating-point across both X- and Y-memory 

DP: 32 bits fixed-point (low 16 bits of X and Y) (for use in dual-ported RAM 
F: 32 bits floating-point (low 16 bits of X and Y) (for use in dual-ported RAM 

TWD: Multiplexed BCD decoding from Thumbwheel port 
TWB: Multiplexed binary decoding from Thumbwheel port 
TWS: Multiplexed serial I/O decoding from Thumbwheel port 
TWR: Multiplexed serial resolver decoding from Thumbwheel port 

*: No address definition; uses part of the definition word as general-purpose 
variable 

If an X or Y type of M-variable is defined, also define the starting bit to use, the number of bits, and the 
format (decoding method). 
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Typical M-variable definition statements are: 
M1->Y:$FFC2,8,1 
M102->Y:49155,8,16,S 
M103->X:$C003,0,24,S 
M161->D:$002B 
M191->L:$0822 
M50->DP:$D201 
M51->F:$D7FF 
M100->TWD:4,0.8.3,U 

See the instructions for each type of M-variable definition in the On-Line Commands section of this 
manual.  Many suggested M-variable definitions are given in SETUP.PMC in the Examples section of the 
manual. 

It is a good idea to prepare a single file with all of the M-variable definitions and to put at the top of this 
file the command M0..1023->*.  This will remove all existing definitions, and help to prevent 
mysterious problems caused by stray M-variable definitions. 

The M-variable definitions are stored as 24-bit codes at PMAC addresses Y:$BC00 (for M0) to Y:$BFFF 
(for M1023).  For all but the thumbwheel multiplexer port M-variables, the low 16 bits of this code 
contains the address of the register pointed to by the M-variable (the high eight bits tell what part of the 
address is used and how it is interpreted).  If another M-variable points to this part of the definition, it can 
be used to change the subject register.  The main use of this technique is to create arrays of P- and Q-
variables, as is explained above, with examples, in the descriptions of those variables.  It can also be used 
to create arrays in dual-ported RAM or in user buffers (see on-line command DEFINE UBUFFER).  

Limited Range 
Many M-variables have a more limited range than the PMAC full computational range.  If a value outside 
of the range of an M-variable is placed to that M-variable, PMAC automatically rolls over the value to 
within that range and does not report any errors. 

For example, with a single bit M-variable, any odd number written to the variable ends up as 1, any even 
number ends up as 0.  If a non-integer value is placed in an integer M-variable, PMAC automatically 
rounds to the nearest integer. 

Using M-Variables 
Once defined, an M-variable may be used in programs just as any other variable — through expressions.  
When the expression is evaluated, PMAC reads the defined memory location, calculates a value based on 
the defined size and format, and utilizes it in the expression. 

Care should be exercised in using M-variables in expressions.  If an M-variable is something that can be 
changed by a servo routine (such as instantaneous commanded position), which operates at a higher 
priority the background expression evaluation, there is no guarantee that the value will not change in the 
middle of the evaluation.  For instance, if in the expression (M16- M17)*(M16+M17) the M-variables are 
instantaneous servo variables, the user cannot be sure that M16 or M17 will have the same value both 
places in the expression, or that the values for M16 and M17 will come from the same servo cycle.  The 
first problem can be overcome by setting P1=M16 and P2=M17 right above this, but there is no general 
solution to the second problem. 
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Operators 
PMAC operators work like those in any computer language: they combine values to produce new values.   

Arithmetic Operators 
PMAC uses the four standard arithmetic operators: +, -, *, and /.  The standard algebraic precedence rules 
are used: multiply and divide are executed before add and subtract, operations of equal precedence are 
executed left to right, and operations inside parentheses are executed first. 

Modulo Operator 
PMAC also has the % modulo operator, which produces the resulting remainder when the value in front 
of the operator is divided by the value after the operator.  Values may be integer or floating point.  This 
operator is particularly useful for dealing with counters and timers that roll over. 

When the modulo operation is done by a positive value X, the results can range from 0 to X (not 
including X itself).  When the modulo operation is done by a negative value -X, the results can range 
from -X to X (not including X itself).  This negative modulo operation is very useful when a register can 
roll over in either direction. 

Logical Operators 
PMAC has three logical operators that do bit-by-bit operations: & (bit-by-bit AND), | (bit-by-bit OR), and 
^ (bit-by-bit EXCLUSIVE OR).  If floating-point numbers are used, the operation works on the fractional 
as well as the integer bits. & has the same precedence as * and /; | and ^ have the same precedence as + 
and -.  Use of parentheses can override this default precedence. 

Note 

Bit-by-bit logical operators differ from the simple Boolean operators AND and OR 
used in compound conditions (q.v.). 

Functions 
These perform mathematical operations on constants or expressions to yield new values.  The general 
format is: 

{function name} ({expression}) 

The available functions are SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SQRT, LN, EXP, ABS, and 
INT. 

Note 

The global I-variable I15 controls whether the units for the trigonometric functions 
are degrees or radians.  

SIN 
Function standard trigonometric sine function. 

Syntax SIN ({expression}) 
Domain All real numbers 

Domain units  none 
Range -1.0 — 1.0 

Range units  none 
Possible errors  none 

 



PMAC User Manual 

Computational Features 13-15 

COS 
Function standard trigonometric cosine function. 

Syntax COS ({expression}) 
Domain All real numbers 

Domain units radians/degrees 
Range -1.0 — 1.0 

Range units  none 
Possible errors  none 

TAN 
Function standard trigonometric tangent function 

Syntax TAN ({expression}) 
Domain all real numbers except +/- Pi/2, 3Pi/2, 5Pi/2... 

Domain units radians/degrees 
Range all real  

Range units  none 
Possible errors Divide by zero on illegal domain  

(may just return maximum real value instead). 

ASIN 

Function inverse sine (arc-sine) function with its range reduced to 
+/-90 degrees. 

Syntax ASIN ({expression}) 
Domain  -1.0 — 1.0 

Domain units none 
Range  -Pi/2 — Pi/2 radians (-90 — 90 degrees) 

Range units  radians/degrees 
Possible errors Illegal Domain 

ACOS 
Function inverse cosine (arc-cosine) function with its range reduced 

to 0 — 180 degrees. 
Syntax ACOS ({expression}) 
Domain  -1.0 — 1.0 

Domain units none 
Range 0 — Pi radians (0 — 180 degrees) 

Range units  radians/degrees 
Possible errors Illegal Domain 

ATAN 
Function standard inverse tangent (arc-tangent) function. 
Syntax ATAN ({expression}) 
Domain all reals 

Domain units none 
Range -Pi/2 — Pi/2 radians (-90 — 90 degrees) 

Range units radians/degrees 
Possible errors none 
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ATAN2 
This function returns the angle whose sine is the expression in parentheses and whose cosine is the value 
of Q0 for that coordinate system. (Actually, it is only the ratio of the magnitudes of the two values, and 
their signs, that matter in this function).  It is distinguished from the standard ATAN function by the use of 
two arguments.  The advantage of this function is it has a full 360 degree range, rather than the 180 
degree range of the single-argument ATAN function. 

Function expanded arctangent function 
Syntax ATAN2 ({expression}) 
Domain all reals 

Domain units none 
Range -Pi — Pi radians (-180 — 180 degrees) 

Range units  radians/degrees 
Possible errors none 

Note 

If doing the calculation in a PLC program, make sure that the proper coordinate 
system has been addressed in that PLC program. 

LN 
Function natural logarithm function (log base e). 
Syntax LN ({expression}) 
Domain all positive reals 

Domain units none 
Range all reals 

Range units none 
Possible errors illegal domain 

EXP 
Note 

To implement the yx function, use ex ln (y) instead.  A sample PMAC expression 
would be EXP (P2*LN (P1)) to implement the function P1

P2
. 

Function exponentiation function (ex). 
Syntax EXP ({expression}) 

Domain all reals 
Domain units none 

Range all positive reals 
Range units none 

Possible errors none 
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SQRT 
Function square root function. 
Syntax SQRT ({expression}) 
Domain all non-negative reals 

Domain units  free 
Range all non-negative reals 

Range units  free 
Possible errors illegal domain 

ABS 
Function absolute value function. 
Syntax ABS ({expression}) 
Domain all reals 

Domain units free 
Range all non-negative reals 

Range units free 
Possible errors none 

INT 
Note 

This function returns the greatest integer less than or equal to the argument (INT 
(2.5)=2, INT (-2.5)=-3). 

Function truncation function 
Syntax INT ({expression}) 
Domain all reals 

Domain units free 
Range integers 

Range units free 
Possible errors none 

Expressions 
A PMAC expression is a mathematical construct consisting of constants, variables, and functions, 
connected by operators.  Expressions can be used to assign a value to a variable, to determine a motion 
program parameter, or as part of a condition.  A constant can be an expression, so if the syntax calls for 
{expression}, a constant may be used as well as a more complicated expression — no extra 
parentheses are required for non-constant expressions, unlike when {data} is specified.  Examples of 
expressions are: 
512 
P1 
P1-Q18 
1000*COS (Q25*3.14159/180) 
I100*ABS (M347)/ATAN (P(Q3+1)/6.28)+5 
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Data 
For PMAC purposes, if command syntax requires {data}, either a constant that is not surrounded by 
parentheses, or an expression that is surrounded by parentheses can be utilized.  (Since a constant can be 
an expression, it is legal to put a constant in parentheses, but this takes more storage and more calculation 
time.) 

For example, if the listed command syntax is T{data, it is legal to use T100, T(P1+250*P2), or 
T(100) (which is legal but wasteful). 

Variable Value Assignment Statement 
This type of statement calculates and assigns a value to a variable.  When a value assignment statement is 
sent to PMAC, if a program buffer is open, the statement is added to the buffer.  If not, it is executed 
immediately.  The standard assignment syntax is: 

{variable name}={expression} 

where {variable name} specifies which variable is to be used,  and {expression} represents the 
value to be assigned to the variable. 

I-Variable Default Value Assignment 
.A statement with the syntax:   

I{data}=* 

will assign to the specified I-variable the manufacturer's default value for that variable (not the user's 
EEPROM-stored value). 

Synchronous M-Variable Value Assignment 
In a motion program, when PMAC is blending or splining moves together, it must be calculating in the 
program ahead of the actual point of movement.  This is necessary in order to be able to blend moves 
together at all, and to be able to do reasonable velocity and acceleration limiting.  Depending on the mode 
of movement, calculations while blending may occur one, two, or three moves ahead of the actual 
movement.   

Why Needed 
When assigning values to variables is part of the calculation, the variables will get their new values ahead 
of their place in the program when looking at actual move execution.  For P and Q-variables, this is 
generally not a problem, because they exist only to aid further motion calculations.  However, for M-
variables, particularly outputs, this can be a problem, because with a normal variable value assignment 
statement, the action will take place sooner than is expected, looking at the statement's place in the 
program. 

For example, in the program segment 
X10 ; Move X-axis to 10 
M1=1 ; Turn on Output 1 
X20 ; Move X-axis to 20 

expect that Output 1 would be turned on at the time the X-axis reached position 10.  But since PMAC is 
calculating ahead, at the beginning of the move to X10, it will have already calculated through the 
program to the next move, working through all program statements in between, including M1=1, which 
turns on the output.  Therefore, using this technique, the output will be turned on sooner than desired. 
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How They Work 
Synchronous M-variable assignment statements were implemented as a solution to this problem.  When 
one of these statements is encountered in the program, it is not executed immediately; rather, the action is 
put on a stack for execution at the start of the actual execution of the next move in the program.  This 
makes the output action properly synchronous with the motion action. 

In the modified program segment 
X10 ; Move X-axis to 10 
M1==1 ; Turn on Output 1 synchronously 
X20 ; Move X-axis to 20 

the statement M1==1 (the double-equals indicates synchronous assignment) is encountered at the 
beginning of the move to X10, but the action is not actually performed until the start of blending into the 
next move (X20). 

Note 

With synchronous assignment, the actual assignment is performed where the 
blending to the new move begins, which is generally ahead of the programmed 
point.  In LINEAR and CIRCLE mode moves, this blending occurs V*TA/2 
distance ahead of the specified intermediate point, where V is the commanded 
velocity of the axis, and TA is the acceleration (blending) time. 

Also, notice that the assignment is synchronous with the commanded position, not necessarily the actual 
position.  It is the responsibility of the servo loop to make the commanded and actual positions match 
closely 

In applications where PMAC is executing segmented moves (I13>0), the synchronous M-variables are 
executed at the start of the first I13 spline segment after the start of blending into the programmed move. 

Note 

Synchronous M-variables after the last move or DWELL in the program do not 
execute when the program ends or temporarily stops.  Use a DWELL as the last 
statement of the program to execute these statements. 

Syntax 
There are four forms of synchronous M-variable assignment statements: 
M{constant}=={expression} ; Straight equals assignment 
M{constant}&={expression} ; AND-equals assignment 
M{constant}|={expression} ; OR-equals assignment 
M{constant}^={expression} ; XOR-equals assignment 

In all of these forms, the expression on the right side of the statement is evaluated when the line is 
encountered in the program, ahead of the execution of the move.  The value of the expression, the 
variable number, and the operator are placed on a stack for execution at the proper time. 

Execution 
When actual execution of the appropriate move starts, these items are pulled off the stack, and the actual 
action is performed.  In the case of the == syntax, the value is simply assigned to the variable at this time.  
In the case of the other forms (&=, |=, and ^=), the variable is read at this time, the bit-by-bit Boolean 
operation (AND, OR, XOR, respectively) is performed between the variable value and the expression 
value, and the result is written back to the variable. 
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Special Boolean Feature 
These Boolean assignment operators are subtly different from what would seem to be equivalent == 
statements.  Consider the two statements acting on an 8-bit M-variable, which attempt to make all of the 
odd bits 1, while leaving the even bits where they are: 
M50==M50 & $AA 
M50&=$AA 

The difference between the two statements is in when M50 is read for the operation.  In the first case, it is 
read when the statement is first evaluated in the program.  In the second case, it is read when the 
operation is pulled off the stack, immediately before the variable is written to.  In this second technique, 
there is no chance that the value of the M-variable can be changed by some other task in the mean time. 

Limitations 
There are a few limitations to these functions to be aware of: 

Valid Forms 
These statements may not be used with any of the thumbwheel-multiplexer-port M-variable forms (TWB, 
TWD, TWR, or TWS).  The Boolean assignments (&=, |=, ^=) cannot be used with any double-width M-
variable forms (D, L, or F). 

Stack Limits 
Second, the stack space that holds these actions is limited to 32 words of memory (per coordinate 
system).  Each assignment occupies two or three words of memory while it is pending, and there is one 
extra word per move to mark the end of actions for that move.  When PMAC is working n moves ahead, 
it is always safe to allot 32/(n+1) words per move.  This rule of thumb will give PMAC adequate stack 
space for its stack manipulations and will give enough synchronous M-variables.  When PMAC is 
working one move ahead, this rule of thumb gives 16 words per move of stack space (which is at least 
five assignments plus one end word); when PMAC is working two moves ahead, this rule of thumb gives 
10 words per move of stack space (which is at least three assignments plus one end word).   

More assignments than this can be made with a single move if, for instance, it is known that the next 
move will have no synchronous assignments, or that some of the assignments will occupy less than three 
words on the stack.  In no case may the assignments for a single move occupy more than 32 words of 
memory. 

The following table shows the number of words of stack space required for each type of assignment: 
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Function Expression 

Value 
1- to 20-bit M-

Variable 
* or 24-bit M-

Variable 
32- or 48-bit M-

Variable 
== All 1's 2 2 3 
== All 0's 2 2 3 
== Others 3 2 3 
&= All 1's 0 (no-op) 0 (no-op) illegal 
&= All 0's 2 2 illegal 
&= Others 2 2 illegal 
|= All 1's 2 2 illegal 
|= All 0's 0 (no-op) 0 (no-op) illegal 
|= Others 2 2 illegal 
^= All 1's 2 2 illegal 
^= All 0's 0 (no-op) 0 (no-op) illegal 
^= Others 2 2 illegal 

Comparators 
A comparator evaluates the relationship between two values (constants or expressions).  It is used to 
determine the truth of a condition in a motion or PLC program.  The valid comparators for PMAC are: 

     =    (equal to) 
     !=   (not equal to) 
     >    (greater than) 
     !>   (not greater than; less than or equal to) 
     <    (less than) 
     !<   (not less than; greater than or equal to) 
     ~    (approximately equal to — within one) 
     !~   (not approximately equal to — at least one apart) 

Notice that <= and >= are not valid PMAC comparators.  The comparators !> and !<, respectively, 
should be used in their place. 

Conditions 
A condition can be used to control program flow in motion or PLC programs.  It is evaluated as either 
true or false.  It can be used in an IF branching statement or WHILE looping statement.  PMAC supports 
both simple and compound conditions. 

A condition in a command line —IF or WHILE — must be surrounded by parentheses. 

Simple Conditions 
A simple condition consists of three parts: 
{expression} {comparator} {expression} 

If the relationship between the two expressions defined by the comparator is valid, then the condition is 
true; otherwise, the condition is false.  Examples of simple conditions in commands are: 

WHILE(1<2)      (always true) 
IF(P1>5000) 
WHILE(SIN (P2-P1)!>P300/1000) 

Notice that parentheses are required around the condition itself. 
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Unlike in some high-level languages, a PMAC condition may not be simply a value, evaluated for zero or 
non-zero (e.g. IF(P1) is not valid).  It must explicitly be a condition with two expressions and a 
comparator. 

Compound Conditions 
A compound condition is a series of simple conditions connected by the logical operators AND and OR.  
The compound condition is evaluated from the values of the simple conditions by the rules of Boolean 
algebra.  In the PMAC, AND has execution precedence over OR (that is, ORs operate on blocks of ANDed 
simple conditions).  PMAC will stop evaluating compound AND conditions after one false simple 
condition has been found.  Examples of compound conditions in command lines are: 
IF(P1>-20 AND P1<20) 
WHILE(P80=0 OR I120>300 AND I120<400) 
IF(Q16!<Q17 AND Q16!>Q18 OR M136<256 AND M137<256) 

The simple conditions contained within a compound condition on a single line must not be separated by 
parentheses.  For example, IF((P1>-20) AND (P1<20)) is an illegal condition and will be rejected 
for illegal syntax. 

Single-Line Condition Actions 
In PMAC motion programs (but not in PLC programs), the action(s) to be executed on a true condition 
can be put on the same line as the condition itself.  In this case, no ENDIF or ENDWHILE is required to 
mark the end of the conditional action, and none may be used; the end of the line is automatically the 
marker for the end of the conditional action.  Examples of this form are: 
IF (P1<0) P1=0 
WHILE (M11=0) DWELL 10 

In PMAC rotary program buffers single-line condition actions are the only types of conditional statements 
permitted.  Multiple-line conditions are not permitted because it cannot be guaranteed that the line that 
must be jumped to will be in the rotary buffer at that time. 

Multiple-Line Conditions 
In PMAC PLC programs (but not in motion programs), compound conditions over several program lines 
are allowed.  The first line of the condition must start with IF or WHILE; following lines of the condition 
must start with AND or OR.  Simple and compound conditions within a program line are always evaluated 
before the conditions on separate lines are combined.  Between the conditions on multiple lines, AND 
takes precedence over OR.  PMAC will stop evaluating a multi-line AND condition after one single-line 
condition has been found false.  An example is: 
IF (M11=1 OR M12=1) 
AND (M13=1 OR M14=1) 

Timers 
There are four timer registers at addresses X:$0700, Y:$0700, X:$0701, and Y:$0701.  These four 24-bit 
registers are general-purpose timers for user program use.  PMAC decrements them once per servo cycle.  
It is permitted to write to them as desired.  Typically, read and write access is through M-variables.  
Usually a value is written equal to the time to wait, scaled in servo cycles.  Then the program waits for the 
register to become less than 0.  The registers will continue to count down until they reach -2

23 (-
8,388,608).  They will not roll over back to positive values. 

Since these timers have units of servo cycles, and it is preferred to work in milliseconds, a conversion 
must be done.  To convert from milliseconds to servo cycles, multiply by 2

23
 (8,388,608) and divide by 

the value of I10. 
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When looking for a zero-crossing on these registers, it is important to treat them as signed (two's-
complement) variables.  Any M-variable definitions should be in S (signed format).  For example: M90-
>Y:$0700,0,24,S. 

Example 
In a PLC program, to turn on an output for a fixed number of milliseconds: 
M1=1 ; Turn on Machine Output 1 
M90=125*8388608/I10 ; Set timer (M90) to 125 msec, in servo  
 ; cycles 
WHILE (M90>0) ; Wait for counter to count down to zero 
ENDWHILE 
M1=0 ; Turn off Machine Output 1 

Computational Considerations 
When PMAC is doing calculations in a PLC program, motion program, or on-line, it uses its 48-bit 
floating point format for the intermediate form of the calculation.  This gives PMAC the ability to 
automatically convert between its different numerical formats and enables it to do bit-wise operations on 
its P and Q-variables although they are floating point values.   

The process of converting a number to 48-bit format is fast and will not be noticeable in most PMAC 
applications.  However, skipping the conversion step can help increase the PMAC speed and efficiency 
for computationally demanding applications.  In such applications using P, Q, and L (long) format M-
variables skip the conversion step (they are already in 48-bit format) and are computed faster than other 
variable types. 

When PMAC is doing calculations with L-variables in a compiled PLC program (PLCC) it uses a 24-bit 
fixed point format for the intermediate form of the calculation.  This gives PMAC the ability to perform 
the calculations extremely fast.  L-variable calculations are about ten times faster than equivalent floating 
point calculations.   

 

 

 

 



PMAC User Manual 

Writing Programs for PMAC 14-i 

14. Writing Programs for PMAC 
 

Table of Contents 
WRITING PROGRAMS FOR PMAC ......................................................................................................................1 

Writing A Motion Program .......................................................................................................................................1 
Flow Control.........................................................................................................................................................1 
G-Codes ................................................................................................................................................................1 
Modal Commands.................................................................................................................................................1 
Move Commands ..................................................................................................................................................1 

Motion Program Trajectories ....................................................................................................................................2 
Linear Blended Moves ..............................................................................................................................................2 

Acceleration Parameters ......................................................................................................................................2 
Acceleration Limit ................................................................................................................................................2 

Feedrate or Move-Time Specification.......................................................................................................................6 
Short Moves ..........................................................................................................................................................6 
Long Moves...........................................................................................................................................................6 
Feedrate Axes .....................................................................................................................................................11 
Velocity Limit......................................................................................................................................................11 
The Blending Function .......................................................................................................................................11 
Rapid-Mode Moves.............................................................................................................................................12 

Motion Program Move-Until-Trigger .....................................................................................................................12 
Circular Blended Moves..........................................................................................................................................13 

Specifying the Interpolation Plane......................................................................................................................14 
Circle Modes.......................................................................................................................................................14 
Center Vector......................................................................................................................................................14 
Example ..............................................................................................................................................................15 
Radius Size Specification ....................................................................................................................................15 
Example ..............................................................................................................................................................15 
No Center Specification ......................................................................................................................................16 
Feedrate Axes .....................................................................................................................................................16 
Circle Radius Errors...........................................................................................................................................16 
Move Segmentation.............................................................................................................................................16 

PVT-Mode Moves...................................................................................................................................................17 
Mode Statement ..................................................................................................................................................17 
Move Statements .................................................................................................................................................17 
PMAC Calculations ............................................................................................................................................17 
Problems in Stepping..........................................................................................................................................17 
Use to Create Arbitrary Profiles.........................................................................................................................17 
Use in Contouring...............................................................................................................................................18 

Splined Moves.........................................................................................................................................................18 
How They Work ..................................................................................................................................................20 
Added Pieces.......................................................................................................................................................21 
Quantifying the Position Adjustment ..................................................................................................................21 
5-Point Spline Correction...................................................................................................................................21 

Non-Uniform Spline................................................................................................................................................21 
Cutter Radius Compensation...................................................................................................................................22 

Defining the Plane of Compensation ..................................................................................................................22 
Defining the Magnitude of Compensation ..........................................................................................................23 
Turning On Compensation..................................................................................................................................23 
Turning Off Compensation .................................................................................................................................23 
How PMAC Introduces Compensation...............................................................................................................23 
Treatment of Compensated Inside Corners ........................................................................................................25 



 PMAC User Manual 

14-ii Table of Contents 

Treatment of Outside Corners ............................................................................................................................26 
Treatment of Full Reversal .................................................................................................................................28 
Note on Full Circles............................................................................................................................................28 
Speed of Compensated Moves.............................................................................................................................29 
Changes in Compensation ..................................................................................................................................29 
How PMAC Removes Compensation..................................................................................................................30 
Failures in Cutter Compensation .......................................................................................................................32 
Single-Stepping While In Compensation.............................................................................................................33 
Lookahead ..........................................................................................................................................................34 

Axis Transformation Matrices.................................................................................................................................34 
Setting Up the Matrices ......................................................................................................................................34 
Using the Matrices..............................................................................................................................................34 

Calculation Implications..........................................................................................................................................35 
Examples.............................................................................................................................................................35 

Entering A Motion Program....................................................................................................................................37 
Learning a Motion Program ....................................................................................................................................38 
Motion Program Structure.......................................................................................................................................38 

Basic Move Specifications ..................................................................................................................................38 
Defaults...............................................................................................................................................................39 
Controlling Parameters ......................................................................................................................................39 
Simultaneous Moves on Multiple Axes ...............................................................................................................39 
Sequential Moves ................................................................................................................................................39 
Adding Logic.......................................................................................................................................................39 
Line Labels .........................................................................................................................................................40 
GOTO Command................................................................................................................................................40 

Adding Variables and Calculations .........................................................................................................................40 
Subroutines and Subprograms.................................................................................................................................41 

Passing Arguments to Subroutines .....................................................................................................................41 
Example ..............................................................................................................................................................41 
What Has Been Passed? .....................................................................................................................................41 
PRELUDE Subprogram Calls ............................................................................................................................42 

Running a Motion Program.....................................................................................................................................42 
Pointing to the Program .....................................................................................................................................42 
Running the Program .........................................................................................................................................43 
Stepping the Program .........................................................................................................................................43 
What PMAC Checks For.....................................................................................................................................43 

Implementing a Machine-Tool Style Program ........................................................................................................43 
G, M, T, and D-Codes.........................................................................................................................................43 
Standard G-Codes ..............................................................................................................................................44 
Spindle Programs ...............................................................................................................................................48 
Standard M-Codes ..............................................................................................................................................49 
Default Conditions..............................................................................................................................................51 

Rotary Motion Program Buffers..............................................................................................................................51 
Defining a Rotary Buffer.....................................................................................................................................51 
Preparing to Run ................................................................................................................................................52 
Opening for Entry ...............................................................................................................................................52 
Staying Ahead of Executing Line ........................................................................................................................52 
Closing and Deleting Buffers..............................................................................................................................53 

How PMAC Executes a Motion Program ...............................................................................................................53 
Calculating Ahead ..............................................................................................................................................53 
Starting Calculations ..........................................................................................................................................54 
Calculation of Subsequent Moves.......................................................................................................................54 
Implications of Calculating Ahead .....................................................................................................................57 

 

 



PMAC User Manual 

Writing Programs for PMAC 14-1 

WRITING PROGRAMS FOR PMAC 
Writing A Motion Program 
PMAC can hold up to 256 motion programs at one time.  Any coordinate system can run any of these 
programs at any time, even if another coordinate system is already executing the same program. PMAC 
can run as many motion programs simultaneously as there are coordinate systems defined on the card (up 
to eight).  A motion program can call any other motion program as a subprogram, with or without 
arguments.   

The PMAC motion program language is perhaps best described as a cross between a high-level computer 
language like BASIC or Pascal, and G-Code (RS-274) machine tool language.  In fact, it can accept 
straight G-Code programs directly (provided it has been set up properly).  It has the calculational and 
logical constructs of a computer language, and move specification constructs very much like machine tool 
languages.  Numerical values in the program can be specified as constants or expressions. 

Flow Control 
In a motion program, PMAC has WHILE loops and IF..ELSE branches that control program flow.  
These constructs can be nested indefinitely.  In addition, there are GOTO statements, with either constant 
or variable arguments (the variable GOTO can perform the same function as a Case statement).  GOSUB 
statements (constant or variable destination) allow subroutines to be executed within a program.  CALL 
statements permit other programs to be entered as subprograms.  Entry to the subprogram does not have 
to be at the beginning — the statement CALL 20.15000 causes entry into Program 20 at line N15000.  
GOSUBs and CALLs can be nested only 15 deep. 

G-Codes 
To handle machine tool G-codes, PMAC treats Gnn as CALL 1000.nn000.  The following values on 
the line (e.g. X1000) can be treated as parameters to be passed, as for a canned cycle, or the subprogram 
can execute without arguments, return, and execute the rest of the line (as for a modal G-code).  The 
machine tool designer writes Program 1000 to implement the G-codes as he wishes, allowing 
customization and enhancements.  Delta Tau provides a sample file implementing all of the standard G-
codes.  M, S, T, and D codes are similarly implemented. 

Modal Commands 
Many of the statements in PMAC motion programs are modal in nature.  These include move modes, 
which specify what type of trajectory a move command will generate; this category includes LINEAR, 
RAPID, CIRCLE, PVT, and SPLINE.  Moves can be specified either incrementally (distance) or 
absolutely (location) — individually selectable by axis — with the INC and ABS commands.  Move times 
(TA, TS, and TM) and/or speeds (F), are implemented in modal commands.  Modal commands can 
precede the move commands they are to affect, or they can be on the same line as the first of these move 
commands.  

Move Commands 
The move commands themselves consist of a one-letter axis-specifier followed by one or two values 
(constant or expression).  All axes specified on the same line will move simultaneously in a coordinated 
fashion on execution of the line; consecutive lines execute sequentially (with or without stops in between, 
as determined by the mode).  Depending on the modes in effect, the specified values can mean 
destination, distance, and/or velocity (see Trajectory Features section). 
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Motion Program Trajectories 
Among the PMAC outstanding characteristics are the power and flexibility of its trajectory generation 
algorithms.  These algorithms allow a variety of difficult maneuvers to be performed, and permit the 
choice of tradeoffs between ease of use and degree of control.  It is important to remember that these 
trajectories are series of commanded positions only.  It is up to the servo loops for each axis to try to 
make the actual positions match the commanded positions.  All the times, speeds, distances, and profiles 
discussed in this section are commanded ones, unless otherwise noted. 

Linear Blended Moves 
The easiest class of moves to make is the linear blended move category.  In this type of move, an axis 
moves toward the target position at a designated speed, accelerating to and decelerating from this speed in 
a controlled fashion.  If more than one move is specified in succession with no pause in between, the first 
move will blend into the second with the same type of controlled acceleration as is done to and from a 
stop.   

Linear blended move mode is the default mode for motion programs.  If in another move mode, the 
program can be put into this mode with the LINEAR statement.  The program can be taken out of 
LINEAR mode with another move mode statement (e.g. CIRCLE1, CIRCLE2, RAPID, PVT, SPLINE). 
It is good programming practice to declare the LINEAR mode in each program, and not rely on the 
default.  The LINEAR statement is equivalent to the RS-274 G-Code G01. 

Acceleration Parameters 
The acceleration to and from velocity can be constant, providing trapezoidal velocity profiles, it can be 
linearly varying, and yielding S-curve velocity profiles, or it can be a combination of the two.  Specify the 
time for the full acceleration (TA — default parameter is coordinate system I-variable Ix87), and the time 
in each half of the S (TS — default parameter Ix88).  If the specified TA time is less than twice the 
specified TS time, the TA time used will be twice TS (to get pure S-curve acceleration, set TA to 0).  
PMAC can only use integer values for TA and TS.  If a non-integer value is specified, PMAC will round 
it to the nearest integer before using it in trajectory calculations. 

Acceleration Limit 
If the acceleration thus specified exceeds the maximum programmed acceleration (set by Ix17 in 
counts/msec

2
) for any motor involved in the move, the acceleration for all motors in the move is 

decreased in proportion so that no motor exceeds this limit.  The path through space is not changed, nor is 
the shape of the velocity profile for any motor.  To specify acceleration rate directly, TA and TS should 
be set to very small to violate the limit, in which case the acceleration is controlled by the motors' I-
variables Ix17.   

When Too Effective 
When blending linear moves together, the Ix17 limit is enforced even for the intermediate decelerations to 
a stop that are removed to blend into the next move.  As PMAC calculates each move in the blended 
sequence, it has to assume that it could be the last move in the sequence, and it will try to make sure that 
the deceleration to a stop at the programmed position obeys this limit.  This can result in a deceleration 
time longer than the programmed move time (specified either directly with TM, or indirectly by distance 
over F feedrate), which will cause the move to execute at lower than the programmed speed.  This can be 
especially limiting when moves are broken into very small pieces to be blended together.  The Ix17 limit 
must be set higher than the top speed divided by the smallest segment time in order not to limit the speed.  
This can make it too high for effective acceleration control. 
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Note 

If PMAC is operating in move segmentation mode (I13>0), which is required for 
circular interpolation, this Ix17 acceleration limit is not observed.  

Do not set both the TA and TS (Ix87 and Ix88.) times to zero, even if planning to 
rely on the acceleration limit.  This would cause a divide-by-zero error, yielding 
possible erratic performance. 

When Not Effective Enough 
PMAC looks two moves ahead of actual move execution to perform its acceleration limit, and can 
recalculate these two moves to keep the accelerations under the Ix17 limit.  However, there are cases 
where more than two moves, some much more than two, would have to be recalculated in order to keep 
the accelerations under the limit.  In these cases, PMAC will limit the accelerations as much as it can, but 
because the earlier moves have already been executed, they cannot be undone, and therefore the 
acceleration limit will be exceeded. 
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Figure 26 Coordinate System Variables 



PMAC User Manual 

Writing Programs for PMAC 14-5 

2a

a

L

L

t    = 0
t        = 2tACCEL

t    = t

t    = 0
ACCELt        = tL

Lt    = 0

Lt    = t

t    = 0

t tL

0

MAX.

t

t
ACCEL

ACCELERATION

VELOCITY

Parabolic
Sinusoidal

S

S

ACCELt        = 2tS

ACCELt        = 2tS

TIME

S S

S

S

S

TIME

t   = t        - 2tL ACCEL S

For Comparison

Parabolic (sinusoidal)
for comparison

a2

LACCEL St        = 2t  +t

0

4

3

2

1

4

1

3

2

SPECIFY  t   AND  t 
A C C E L S

AND ACCELERATION LIMIT

 
Figure 27 Automatic S Curve Acceleration 



 PMAC User Manual 

14-6 Writing Programs for PMAC 

Feedrate or Move-Time Specification 
The target velocity (feedrate) for the move can be specified, with an F command, or the move time with 
the TM command.  If F is specified, the move time is calculated, and if TM is specified, the feedrate is 
calculated.  The relationship between the two values is reciprocal for a given move distance.  In either 
type of specification, remember that there is an extra TA time at the end of a move or move sequence to 
decelerate to a stop.  That is, a single move with a specified TM will take TM+TA time from start to stop.  
An N-segment move will take 

SUM(I=1 to N){TMI} + TA1/2 + TAN/2 

to complete.  The same is true of feedrate-specified moves, except that TM is calculated as distance 
divided by feedrate for each segment, instead of specified directly. 

Note 

Feedrate is a magnitude and should therefore always be a positive number.  A 
negative Feedrate will cause the motion to be opposite of what is defined as 
positive in the Coordinate System definition. 

Short Moves 
If a feedrate-specified move segment is so short in distance that it cannot reach its target velocity, it will 
spend its entire time in acceleration (yielding a triangular rather than trapezoidal profile).  The minimum 
time for such a move is thus the specified acceleration time (TA or 2TS).  For a single move remember to 
add on the extra acceleration time to decelerate to a stop.   

In a time-specified move segment, if TM is less than the acceleration time, the segment will be done in 
acceleration time, not TM time. 

In other words, the acceleration time is the minimum time for an individual blended move or blended 
move segment.  This is in part a protection against move times getting so short that PMAC cannot 
calculate them in real time.  If working with very short move segments and the move sequence is going 
more slowly than desired, this acceleration-time limit may well be causing the problem. 

Long Moves 
The maximum time for one programmed move is 223-1 (8,388,607) msec, approximately two hours and 
20 minutes.  This is the maximum value that PMAC will accept with a TM command.  It is also the 
maximum value PMAC will compute for a feedrate-specified move when it divides the vector distance 
for the move by the feedrate.  If the vector distance for the move divided by the feedrate yields a time 
greater than 8,388,607 msec, PMAC will use 8,388,607 msec as the move time, and the speed will be 
higher than what was programmed.   
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Figure 28 Linear Mode Trajectories (Sheet 1 of 4) 
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Figure 29 Linear Mode Trajectories (Sheet 2 of  4) 
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Figure 30 Linear Mode Trajectories (Sheet 3 of 4) 
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Feedrate Axes 
If a multi-axis move is specified by feedrate (and not time), there is further flexibility by specifying which 
axes control the vector feedrate, using the FRAX command (on-line or buffered), and velocity is 
apportioned among these axes so that their vector combination (root of sum of squares) is the specified 
velocity.  PMAC calculates the move time as the vector distance of the feedrate axes divided by the 
programmed feedrate.  There is no need to compute each axis’ velocity individually for each different 
angle of movement.  If a simultaneous move is requested of a non-feedrate axis, that move is completed 
in the same time as that computed for the feedrate axes.  The default feedrate axes for a coordinate system 
are the X, Y, and Z axes. 

Note 

If a feedrate-specified move is requested only of non-feedrate axes, PMAC 
calculates the vector distance to be zero (because none of the feedrate axes move), 
yielding a zero move time.  Therefore, the move time will be controlled by the 
acceleration time and/or the motor velocity limits. 

Example Vector Feedrate Calculations 
INC ; Dist = SQRT(32 + 42) = 5 
FRAX(X,Y) ; Move Time = 5/10 = 0.5 
X3 Y4 F10 ; Vx = 3/0.5 = 6 
 ; Vy = 4/0.5 = 8 
INC ; Dist = SQRT(32 + 42) = 5 
FRAX(X,Y) ; Move Time = 5/10 = 0.5 
X3 Y4 Z12 F10 ; Vx = 3/0.5 = 6 
 ; Vy = 4/0.5 = 8 
 ; Vz = 12/0.5 = 24 
INC ; Dist = SQRT(32 + 42 + 122) = 13 
FRAX(X,Y,Z) ; Move Time = 13/10 = 1.3 
X3 Y4 Z12 F10 ; Vx = 3/1.3 = 2.31 
 ; Vy = 4/1.3 = 3.08 
 ; Vz = 12/1.3 = 9.23 
INC ; Dist = 0 
FRAX(X,Y,Z) ; Move Time = 0/10 = 0 (<TA) 
C10 F10 ; Acceleration limited move 

Velocity Limit 
The velocity thus requested of each motor is constrained by the velocity limit for that motor (Ix16).  If a 
request exceeds this limit, all motors involved in the move are slowed in proportion, so that the motor 
does not exceed its limit, but the path in space is preserved.   

Note 

If PMAC is operating in move segmentation mode (I13>0), which is required for 
circular interpolation, this Ix16 velocity limit is not observed. 

The Blending Function 
If more than one move is specified in succession without any intervening dwell commands, each motor 
blends smoothly from its velocity for the first move to the velocity for the second move according to the 
acceleration and S-curve values in force at the time.  This change in speed (which can be a zero change) 
starts at the point where the first move would start to decelerate to a stop at its specified end position, not 
at the first move's endpoint itself.  (However, if Ix92 is set to one, blended moves in that coordinate 
system always come to a stop before the next move.) 
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The acceleration parameters TA and TS can change between each move.  If the final deceleration to a 
stop should use a different TA or TS from the previous blending acceleration time in a sequence, declare 
the new TA or TS after the final move command in the sequence, but before the DWELL or other feature 
that stops the continuous sequence. 

Rapid-Mode Moves 
Rapid mode moves are essentially jog moves for each motor assigned to an axis specified in the move.  
The acceleration for each motor is controlled by the values of Ix19 to Ix21 (jog acceleration limit and 
time) in force at the time of the move.  The speed of the move is controlled either by the jog speed 
parameter Ix22 or the maximum-speed parameter Ix16.  Global variable I50 controls which of these is 
used for all motors (I50=0 means Ix22 is used; I50=1 means Ix16 is used). 

On a multi-axis rapid mode move, only the motor calculated to take the longest time at its specified speed 
will actually be commanded to move at that speed.  The commanded speeds for other motors are lessened 
so that they have the same ratio of distance to speed.  This makes the move path approximately linear.  
However, if the acceleration times are not the same for all motors, the commanded move path will not be 
perfectly linear. 

A rapid-mode move is never blended with another move; all motors will be commanded to at least a 
momentary stop before the next move is commanded to start. 

A motion program is put into this mode using the RAPID statement.  It is taken out of this mode by 
another move mode command (e.g., LINEAR, CIRCLE1, CIRCLE2, PVT, SPLINE1).  RAPID is 
equivalent to the RS-274 G-Code G00. 

Motion Program Move-Until-Trigger 
The move-until-trigger function permits a programmed move to be interrupted by a trigger and terminated 
by a move relative to the position at the time of the trigger.  It is very similar to a homing search move, 
except that the motor zero position is not altered, and there is a specific destination in the absence of a 
trigger. 

The move-until-trigger is a variant of the RAPID move mode on PMAC.  Speeds and accelerations are 
governed by the same variables as for regular rapid moves.  The move-until-trigger function for an axis, 
and therefore for any motor(s) defined to that axis, is specified by adding a ^{data} specifier to the 
move command for the axis, where {data} is the distance to be traveled relative to the trigger before 
stopping. 

This makes the axis command for a move-until trigger {axis}{data} ^{data}, something like 
X50^-5.  The first value is the destination position or distance (depending on whether the axis is in 
absolute or incremental mode) to be traveled in the absence of a trigger.  The second value is the distance 
to be traveled relative to the position at the time of the trigger.  This value is always expressed as a 
relative distance, regardless of whether the axis is in absolute or incremental mode.  Both values are 
expressed in the axis user units. 

Other axes can be specified on the same line without a colon and second value.  These axes will do a 
simultaneous normal rapid move.  However, if an axis matrix transformation is active for the X, Y, and Z 
axes in this coordinate system (TSELECT has been used to select a matrix), or if there is a move-until-
trigger on any of the X, Y, and Z axes, the other axes in the XYZ triplet will also execute a move until 
trigger.  If no post-trigger move is specified for the axis, the post-trigger distance is assumed to be zero.  
If no move at all is specified for the axis, a zero-distance pre-trigger move is assumed. 

The trigger condition for each motor is set up just as for homing search moves: 
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• Ix03 bit 17 specifies whether input flags are used to create the trigger, or the warning following error 
limit status bit is the trigger (torque-limited triggering): 0=flags, 1=error status 

• If input flags are to create the trigger, Ix25 specifies the flag register. 
• If input flags are to create the trigger, Encoder/Flag I-variables 2 and 3 for this set of flags specify 

which edges of which signals will cause the trigger. 
• Ix03 bit 16 specifies whether the hardware-captured counter value is used as the trigger position 

(suitable for incremental encoder signals, real or simulated) or the software-read position is used 
instead (suitable for other types of feedback 0=hardware, 1=software).  The software-read position 
must be used if the following error status is used for the trigger. 

Notice that each motor has an independent triggering function and move relative to the trigger, even if the 
motors are assigned to the same axis.  If a common trigger signal is desired for multiple motors, the same 
trigger signal must be wired into the flag inputs for all of those motors. 

PMAC will blend each motor smoothly from the pre-trigger move to the post-trigger move according to 
the jog/home acceleration parameters Ix19, Ix20, and Ix21. 

All motors must come to a stop, either at the originally specified position, or at the post-trigger position, 
before PMAC will calculate any further in the motion program.  This means that there is no blending of 
the post-trigger move into any subsequent moves. 

The captured value of the sensor position at the trigger is stored in a dedicated register if later access is 
needed.  The units are in counts; for incremental encoders, they are relative to the power-up/reset 
position. 

PMAC sets the motor home-search-in-progress status bit (bit 10 of the first motor status word returned on 
a ? command) true (1) at the beginning of a programmed move-until-trigger move.  The bit is set false (0) 
either when the trigger is found, or at the end of the move.   

PMAC also sets the motor trigger move status bit (bit 7 of the second motor status word returned on a ? 
command) true at the beginning of a programmed move-until-trigger move, and keeps it true at least until 
the end of the move.  If a trigger is found during the move, this bit is set false at the end of the post-trigger 
move; however, if the pre-trigger move finishes without finding a trigger, the bit is left true at the end of 
the move.  Therefore, this bit can be used at the end of the move to tell whether the trigger was found 
successfully or not. 

Circular Blended Moves 
PMAC allows circular interpolation on the X, Y, and Z axes in a coordinate system.  As with linear 
blended moves, TA and TS control acceleration to and from a stop, and between moves.  Circular blended 
moves can be feedrate-specified (F) or time-specified (TM), just as with linear moves.  It is possible to 
change back and forth between linear and circular moves without stopping. 

Note 

In order for PMAC to do circular moves, parameter I13 must be greater than zero. 
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Specifying the Interpolation Plane 
The first thing that should be done in preparing for a circular move is to specify the orientation of the 
plane that will contain the circle.  This is done by specifying the normal vector to that plane with the 
NORMAL command.  The arguments of this command are the component magnitudes of the vector: I (X-
axis direction), J (Y-axis direction), and K (Z-axis direction).  A typical command might be NORMAL 
I0.866 J0.5 K0.0.  The length of the normal vector specified here is not important; only the ratio 
between the component magnitudes is (which determines the direction).   

Standard Planes 
To specify the circles in the XY plane, simply command NORMAL K-1 (equivalent  to G17 in machine-
tool code).  Similarly, for circles in the ZX plane, command NORMAL J-1 (G18 equivalent); for circles 
in the YZ plane, command NORMAL I-1 (G19 equivalent).   

Clockwise Direction Sense 
The directional sense of the normal vector is right handed; that is, in a right-handed coordinate system, if 
pointing a right thumb in the direction of the specified normal vector, the fingers will curl in the direction 
of a clockwise arc in the plane thus specified. 

Circle Modes 
To put the program in circular mode, use the program command CIRCLE1 for clockwise arcs (G02 
equivalent) or CIRCLE2 for counterclockwise arcs (G03 equivalent).  LINEAR will go back to linear 
blended moves.  Once in circular mode, a circular move is specified with a move command specifying the 
move endpoint and either the vector to the arc center or the distance (radius) to the center.  The endpoint 
may be specified either as a position or as a distance from the starting point, depending on whether the 
axes are in absolute (ABS) or incremental (INC) mode (individually specifiable).   

Center Vector 
If the vector method of locating the arc center is used, the vector is specified by its I, J, and K components 
(I specifies the component parallel to the X axis, J to the Y axis, and K to the Z axis). This vector can be 
specified as a distance from the starting point (i.e. incrementally), or from the XYZ origin (i.e. 
absolutely).  The choice is made by specifying R in an ABS or INC  statement (e.g. ABS (R) or INC 
(R)).  This affects I, J, and K specifiers together.  (ABS and INC without arguments affect all axes, but 
leave the vectors unchanged).  The default is for incremental vector specification.   

Note 

The standard machine tool usage is for incremental vector specification even when 
move endpoint specification is absolute. 

A typical circular move command with a vector specification is: 
X1000 Y2000 I500 J-500 



PMAC User Manual 

Writing Programs for PMAC 14-15 

Example 
Starting from the point X0 Y0, make a quarter circle clockwise in the XY plane to X20 Y20, then a linear 
move to X40 Y20, then a three-quarters circle clockwise to X20 Y0.  With the default modes of absolute 
move and incremental vector specification, the program would be: 
NORMAL K-1 ; XY plane 
F10 
CIRCLE1 ; Clockwise circle 
X20 Y20 I20 J0  ; Arc move; I=20-0=20; J=0-0=0 
LINEAR 
X40 Y20 
CIRCLE1 
X20 Y0 I0 J-20 ; Arc move; I=40-40=0; J=0-20=-20 

Radius Size Specification 
If the radius method of locating the arc center is used, the radius is the number after the letter R in the 
move command.  This value always represents the distance from the move starting point.  With radius 
specification, it is also necessary to specify whether the arc to the move endpoint is the long route (>=180 
degrees) or the short route (<=180 degrees).  The PMAC convention is to take the short arc path if the R 
value is positive, and the long arc path if R is negative.  R values are not modal.  A value must be 
specified on each move command line.  It is not possible to do a full circle in a single move command 
with a radius specification; the circle must be broken into at least two parts.  A typical circular move 
command with a radius specification is: 

X1000 Y2000 R750 

Example 
To do the same moves as in the above example, except with radius center specification, the program 
would be: 
NORMAL K-1 ; XY plane 
F10 
CIRCLE1 
X20 Y20 R20 ; Arc move < 180 deg   
X40 Y20 ; Automatically linear 
X20 Y0 R-20 ; Arc move > 180 deg   

Do not use the R radius specification if using the axis transformation matrices for scaling purposes with 
the AROT or IROT statements.  The radius value will not scale with the axes. 
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Figure 32 PMAC Circular Interpolation 

No Center Specification 
If there is neither a vector specification nor a radius specification on a given move command line, the 
move will be linearly interpolated between start and end points, even if the program is in circular move 
mode.  However, cutter compensation will not work properly if this is done.  LINEAR move mode must 
be explicitly declared if cutter compensation is on. 

Feedrate Axes 
Any axes used in the circular interpolation are automatically feedrate axes for circular moves, even if they 
were not so specified in a FRAX command.  Other axes may or may not be feedrate axes. Any non-
feedrate axes commanded to move in the same move command will be linearly interpolated so as to finish 
in the same time.  This permits easy helical interpolation.  See the Feedrate Axes section in this manual. 

Circle Radius Errors 
If the endpoint is not the same distance from the center as the starting point, the change in radius is taken 
up smoothly over the course of the move.  This allows smooth compensation for round off errors.  For 
circles using the Radius center specification (the R format as opposed to I, J, K format) each coordinate 
system has an I-variable (Ix96) that determines the limit in distance difference for which this 
compensation will be done.  Above this limit, a run-time error will be generated and the program will 
stop.   

This limit helps distinguish between round off errors and major mistakes. Regardless of this limit, if the 
distance from starting point to center or from ending point to center is zero, an error will be generated and 
the program will stop.  If the specified vector does not lie in the plane of interpolation, the projection of 
that vector into the plane is used. 

Move Segmentation 
PMAC computes circular trajectories through a rapid and continuous cubic spline technique.  The spline 
segments are of a time specified by I13 (in units of milliseconds).  Typically, a value of 5 to 10 
milliseconds will be used, depending on the number of axes being controlled by the card.  When I13 is 
greater than zero, all blended moves (linear and circular) are computed through this ongoing cubic spline 
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technique.  If I13 is zero, linear moves are not computed using this spline technique, and circular moves 
are not permitted (if a circular move is requested, it will be done as a linear move).  The difference in the 
actual performance of linear and transition-point moves between I13=0 mode and I13>0 mode is virtually 
imperceptible, unless the feature sizes of the moves are in the same range as the I13 time. 

PVT-Mode Moves 
For the user who desires more direct control over the trajectory profile, PMAC offers  Position-Velocity-
Time (PVT) mode moves.  In these moves, the axis states are specified directly at the transitions between 
moves (unlike in blended moves).  This requires more calculation by the host, but allows tighter control 
of the profile shape.  For each piece of a move, specify the end position or distance, the end velocity, and 
the piece time. 

Mode Statement 
PMAC is put in this mode with the program statement PVT{data}, where {data} is a constant, 
variable, or expression, representing the piece time in milliseconds.  This value should be an integer; if it 
is not, PMAC will round it to the nearest integer.  The piece time may be changed between pieces, either 
with another PVT{data} statement, or with a TA{data} statement.  The program is taken out of this 
mode with another move mode statement (e.g. LINEAR, RAPID, CIRCLE, SPLINE). 

Move Statements 
A PVT mode move is specified for each axis to be moved with a statement of the form 
{axis}{data}:{data}, where {axis} is a letter specifying the axis, the first {data} is a value 
specifying the end position or the piece distance, depending on whether the axis is in absolute or 
incremental mode, respectively, and the second {data} is a value representing the ending velocity. 

The units for position or distance are the user length or angle units for the axis, as set in the Axis 
Definition statement.  The units for velocity are defined as length units divided by time units, where the 
length units are the same as those for position or distance, and the time units are defined by variable Ix90 
for the coordinate system (feedrate time units).  The velocity specified for an axis is a signed quantity. 

PMAC Calculations 
From the specified parameters for the move piece, and the beginning position and velocity (from the end 
of the previous piece), PMAC computes the only third-order position trajectory path to meet the 
constraints.  This results in linearly changing acceleration, a parabolic velocity profile, and a cubic 
position profile for the piece. 

Problems in Stepping 
Since a non-zero end velocity for the move can be specified (directly or indirectly), it is not a good idea to 
step through a program of transition-point moves, and care must be exercised in downloading these 
moves in real time.  With the use of the BLOCKSTART and BLOCKSTOP statements surrounding a series 
of PVT moves, the last of which has a zero end velocity, it is possible to use a Step command to execute 
only part of a program.   

Use to Create Arbitrary Profiles 
The PVT mode is useful for creating arbitrary trajectory profiles.  It provides a building block approach to 
putting together parabolic velocity segments to create whatever overall profile is desired.  PVT mode can 
create any profile that any other move mode can. The following diagram shows common velocity 
segment profiles. 



 PMAC User Manual 

14-18 Writing Programs for PMAC 

Time

V

t

∆P=1/2 Vt

Time

V

t
∆P=1/3 Vt

Vel

Time

V

t

∆P=2/3 Vt

Vel

Time

V

t

∆P=Vt

Vel

V

t

∆P=1/2(V  +V  ) t

Vel

V

t

∆P =5/6 Vt

1 2

V/2
∆P =1/6 Vt1

2

2t

2

V1

 
 

Figure 33 – PVT Mode Contouring (Hermite Spline) 

Use in Contouring 
PVT mode provides excellent contouring capability, because it takes the interpolated commanded path 
exactly through the programmed points.  It creates a path known as a Hermite Spline.  LINEAR and 
SPLINE modes are second and third order B-splines, respectively, which pass to the inside of 
programmed points. 

Compared to the PMAC SPLINE mode, PVT produces a more accurate profile.  Its worst-case error can 
be estimated as: 

384

4R
3R384

4T4VE θ
==  

where V is the vector velocity, T is the segment time, R is the local radius of curvature, and θ is the 
subtended angle. 

Splined Moves 
PMAC can perform two types of cubic splines (cubic in terms of the position vs time equations) to blend 
together a series of points on an axis.  Its SPLINE1 mode is a uniform non-rational cubic B-spline and its 
SPLINE2 mode is a non-uniform non-rational cubic B-spline.  It can, of course, do either spline for all of 
the axes simultaneously.  Splining is particularly suited to odd (non-cartesian) geometries, such as radial 
tables and rotary-axis robots, where there are odd axis profile shapes even for regular tip movements.   
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Figure 34 – PVT Segment Shapes 
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Figure 35 Splined Moves (All Segments at Same Time) 



 PMAC User Manual 

14-20 Writing Programs for PMAC 

Four Programmed Segments

V

timeTA (added) TA (added)TA TA TA TA

Three Programmed Segments

V

timeTA (added) TA (added)TA TA TA

Two Programmed Segments

V

timeTA (added) TA (added)TA TA

One Programmed Segment

V

timeTA (added) TA (added)TA

 
Figure 36 Cubic Spline Trajectories 
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Figure 37 PMAC Transition Point Moves (PVT Mode, Parabolic Velocity) 

How They Work 
In SPLINE1 mode, a long move is split into equal-time segments, each of TA time.  Each axis is given a 
destination position in the motion program for each segment with a normal move command line like 
X1000Y2000.  Looking at the move command before this and the move command after this, PMAC 
creates a cubic position-vs-time curve for each axis so that there is no sudden change of either velocity or 
acceleration at the segment boundaries.  The commanded position at the segment boundary may be 
relaxed slightly to meet the velocity and acceleration. 

PMAC can only work with integer (millisecond) values for the TA segment times.  If a non-integer value 
is specified for the TA time, PMAC will round it to the nearest integer automatically.  It will not report an 
error.  This rounding will change the speeds and times for the trajectory. 

PMAC computes intermediate way points for each axis for each point along the spline by taking a 
weighted average of the specified point X(n) and the specified points on either side, according to the 
equation: 
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6
1)X(n4X(n)1)X(n

WP(n)
+++−

=  

PMAC also computes the velocity for each axis at each way point along the spline by taking the velocity 
halfway between the average velocities of the segments on either side of the way point: 

TA* 2
1)-X(n-1)+X(n

TA* 2
1)]-X(n-[X(n)+X(n)]-1)+[X(n=V(n) =  

Having computed exact positions and velocities at segment boundaries, PMAC calculates the unique 
cubic position equation (parabolic velocity profile) that meets these constraints, and uses this equation for 
interpolation. 

The segment time may not be changed on the fly in SPLINE1 mode.  If the segment time is changed in 
the middle of a sequence of moves, PMAC will bring the early part of the sequence to a stop 
automatically, and then start up the following section with the new segment time.  If the segment times 
are small, this can be a very rough operation. 

Added Pieces 
At the beginning and end of a series of splined moves, PMAC automatically adds a zero-distance segment 
of TA time for each axis, and performs the spline between this segment and the adjacent one.  This results 
in an S-curve acceleration to and from a stop.  

Quantifying the Position Adjustment 
The difference between the splined commanded position and the pre-splined (program-line) commanded 
position for an axis at the end of segment n can be calculated according to the simple equation: 

6
Dist(n)1)Dist(n

Diff
−+

=  

where Dist(n) is the programmed distance for segment n of the spline (whether in absolute or incremental 
mode), and Dist(n+1) is the programmed distance for segment n+1. 

5-Point Spline Correction 
In contouring applications, it is often desired to pass through the series of points as closely as possible.  In 
these applications, the error introduced by the standard spline algorithm may be too large to tolerate.  
However, a very simple pre-compensation can dramatically reduce the splining errors.  For each point 
X(n) in the spline, replace with a point X'(n) with the following formula before sending to PMAC: 

X n X n X n X n' ( ) ( ) ( ) ( )
=

− − + − +1 8 1
6

 

Non-Uniform Spline 
The PMAC SPLINE2 mode is very similar to the SPLINE1 mode, except that the requirement that the 
TA spline segment time remain constant is removed.  The removal of this constraint makes the SPLINE2 
mode a non-uniform non-rational cubic B-spline, whereas the SPLINE1 mode is a uniform non-rational 
cubic B-spline.  The non-rational specification indicates that there are no independent weightings (ratios) 
of the different points in the spline. 

The extra freedom of non-uniform segment times makes the SPLINE2 mode more flexible than the 
SPLINE1 mode, but at the cost of about 20% extra calculation time.  SPLINE2 mode is still more 
efficient than any of the non-spline calculation modes.  If the TA segment time is held constant, 
SPLINE2 mode produces trajectories that are identical to SPLINE1 mode. 

The added segment at the beginning of a spline has the same time as the first programmed segment; the 
added segment at the end of a spline has the same time as the last programmed segment. 
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The combined time of any three consecutive segments in a SPLINE2 continuous spline must be less than 
8,388,608 msec, or about 2 hours and 20 minutes. 

Cutter Radius Compensation 
PMAC provides the capability for performing cutter (tool) radius compensation on the moves it performs.  
This compensation can be performed among the X, Y, and Z axes, which should be physically 
perpendicular to each other.  The compensation offsets the described path of motion perpendicular to the 
path automatically by a programmed amount, compensating for the size of the tool.  This permits 
programming the path along the edge of the tool, letting PMAC calculate the tool-center path, based on a 
radius magnitude that can be specified independently of the program. 

Cutter radius compensation is valid only in LINEAR and CIRCLE move modes.  The moves must be 
specified by F (feedrate), not TM (move time).  PMAC must be in move segmentation mode (I13 > 0) to 
do this compensation (I13 > 0 is required for CIRCLE mode anyway.) 

Note 

In CIRCLE mode, a move specification without any center specification results in 
a linear move.  This move is executed correctly without cutter radius compensation 
active, but if the compensation is active, it will not be applied properly in this case.  
A linear move must be executed in LINEAR mode for proper cutter-radius 
compensation. 

Defining the Plane of Compensation 
Several parameters must be specified for the compensation.  First, the plane in which the compensation is 
to be performed must be set using the buffered motion-program NORMAL command.  Any plane in XYZ-
space may be specified.  This is done by specifying a vector normal to that plane, with I, J, and K-
components parallel to the X, Y, and Z-axes, respectively.   

For example, NORMAL K-1, by describing a vector parallel to the Z-axis in the negative direction, 
specifies the XY-plane with the normal right/left sense of the compensation (NORMAL K1 would also use 
the XY-plane, but invert the right/left sense).  This same command also specifies the plane for circular 
interpolation.  NORMAL K-1 is the default.  The compensation plane should not be changed while 
compensation is active. 

Other common settings are NORMAL J-1, which specifies the ZX-plane for compensation, and NORMAL 
I-1, which specifies the YZ-plane.  These three settings of the normal vector correspond to RS-274 “G-
codes” G17, G18, and G19, respectively.  If you are implementing G-codes in PMAC program 1000, you 
could incorporate in PROG 1000: 

 N17000 NORMAL K-1 RETURN 
 N18000 NORMAL J-1 RETURN 
 N19000 NORMAL I-1 RETURN 
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Defining the Magnitude of Compensation 
The magnitude of the compensation – the cutter radius – must be set using the buffered motion program 
command CCR{data} (Cutter Compensation Radius).  This command can take either a constant 
argument (e.g. CCR0.125) or an expression in parentheses (e.g. CCR(P10+0.0625)).  The units of 
the argument are the user units of the X, Y, and Z-axes.  In RS-274 style programs, these commands are 
often incorporated into tool data D-codes using PMAC motion program 1003. 

Negative and zero values for cutter radius are possible.  Note that the behavior in changing between a 
positive and negative magnitude is different from changing the direction of compensation.  See the 
Changes in Compensation section in this manual.  Also, the behavior in changing between a non-zero 
magnitude and a zero magnitude is different from turning the compensation on and off.  See the 
appropriate sections. 

Turning On Compensation 
The compensation is turned on by buffered motion program command CC1 (offset left) or CC2 (offset 
right).  These are equivalent to the RS-274 G-Codes G41 and G42, respectively.  If implementing G-
Code subroutines in PMAC motion program 1000, simply incorporate in PROG 1000: 
N41000 CC1 RETURN 
N42000 CC2 RETURN 

Turning Off Compensation 
The compensation is turned off by buffered motion program command CC0, which is equivalent to the 
RS-274 G- Code G40.  If implementing G-Code subroutines in PMAC motion program 1000, simply 
incorporate in PROG 1000: 
N40000 CC0 RETURN 

How PMAC Introduces Compensation 
PMAC gradually introduces compensation over the next LINEAR or CIRCLE-mode move following the 
CC1 or CC2 command that turns on compensation.  This lead-in move ends at a point one cutter radius 
away from the intersection of the lead-in move and the first fully compensated move, with the line from 
the programmed point to this compensated endpoint being perpendicular to the path of the first fully 
compensated move at the intersection. 

Note that few controllers can make their lead-in move a CIRCLE-mode move.  This capability permits 
establishing contact with the cutting surface very gently, important for fine finishing cuts. 

Inside Corner Introduction 
If the lead-in move and the first fully compensated move form an inside corner, the lead-in move goes 
directly to this point.  When the lead-in move is a LINEAR-mode move, the compensated tool path will 
be at a diagonal to the programmed move path.  When the lead-in move is a CIRCLE-mode move, the 
compensated tool path will be a spiral. 

 
 
 



 PMAC User Manual 

14-24 Writing Programs for PMAC 

Line

Line

Line

Line

Programmed
Path

Tool Center
Path Line

Line

Programmed
Path

Tool Center
Path

Arc

Arc

Line to Line Line to Arc

Arc to ArcArc to Line

Line

Line

Programmed
Path

Tool Center
Path

Spiral

Arc

Spiral

Arc

Introducing Compensation – Inside Corner

Programmed
Path

Tool Center
Path

Arc

Arc

rr

r r

CC2 CC2

CC2 CC2

 
Figure 38 – Compensation – Inside Corner 

Outside Corner Introduction 
If the lead-in move and the first fully compensated move form an outside corner, the lead-in move first 
moves to a point one cutter radius away from the intersection of the lead-in move and the first fully 
compensated move, with the line from the programmed point to this compensated endpoint being 
perpendicular to the path of the lead-in move at the intersection.  When the lead-in move is a LINEAR-
mode move, this compensated tool path will be at a diagonal to the programmed move path.   

When the lead-in move is a CIRCLE-mode move, this compensated tool path will be a spiral.  Then a 
circular arc move with radius equal to the cutter radius is added, ending at a point one cutter radius away 
from the intersection of the lead-in move and the first fully compensated move, with the line from the 
programmed point to this compensated endpoint being perpendicular to the path of the first fully 
compensated move at the intersection. 
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Figure 39 – Compensation Outside Corner 

The behavior for lead-in moves is different from changing the compensation radius from zero to a non-
zero value while compensation is active.  An arc move is always added at the corner, regardless of the 
setting of I89.  This ensures that the lead-in move never cuts into the first fully compensated move. 

Treatment of Compensated Inside Corners 
Inside corners are still subject to the blending due to the TA and TS times in force (default values set by 
coordinate system I-variables Ix87 and Ix88, respectively).  The longer the acceleration time, the larger 
the rounding of the corner.  (The corner rounding starts and ends a distance F*TA/2 from the 
compensated, but unblended corner.)  The greater the portion of the blending is S-curve, the squarer the 
corner will be.   

When coming to a full stop (e.g., Step, Quit, or DWELL at the corner) at an inside corner, PMAC will stop 
at the compensated, but unblended, corner point. 
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Figure 40 – Inside Corner Cutter Compensation  

Treatment of Outside Corners 
For outside corners, PMAC will either blend the incoming and outgoing moves directly together, or it will 
add an arc move to cover the additional distance around the corner.  Which option it chooses is dependent 
on the relative angle of the two moves and the value of I-variable I89. 

The relative angle between the two moves is expressed as the change in directed angle of the motion 
vector in the plane of compensation.  If the two moves are in exactly the same direction, the change in 
directed angle is 0o; if there is a right angle corner, the change is +/-90o; if there is a complete reversal, the 
change in directed angle is 180o. 

I89 specifies the boundary angle between directly blended outside corners and added-arc outside corners.  
It is expressed as the cosine of the change in the directed angle of motion (cos0o=1.0, cos90o=0.0, 
cos180o=-1.0) at the boundary of the programmed moves.  The change in directed angle is equal to 180o 
minus the included angle at the corner. 

Sharp Outside Corner 
If the cosine of the change in directed angle is less than I89, which means the corner is sharper than the 
specified angle, then an arc move will be added around the outside of the corner.   
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Figure 41 – Outside Corner Cutter Compensation Sharp Angle 

Shallow Outside Corner 
However, if the cosine of the change in directed angle is greater than I89, which means that the corner is 
flatter than the specified angle, the moves will be directly blended together without an added arc. 
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Figure 42 – Outside Corner Cutter Compensation – Shallow Angle 

The added arc prevents the compensated corner from extending too far out on the outside of a sharp 
corner.  However, as an added move, it has the minimum time of the acceleration time, which can cause a 
slowdown on a very shallow angle.  While the default value for I89 of 0.9998 (cos1o) causes an arc to be 
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added on any change in angle greater than 1o, many users will set I89 to 0.707 (cos45o) or 0.0 (cos90o) so 
arcs are only added on sharp corners. 

When coming to a full stop (e.g. Step, Quit, /, or DWELL) at an outside corner with an added arc, PMAC 
will include the added arc move before stopping.  When coming to a full stop at an outside corner without 
an added arc, PMAC will stop at the compensated, but unblended, corner point. 

Treatment of Full Reversal 
If the change in directed angle at the boundary between two successive compensated moves is 180o + 1o 

(the included angle is less than 1o), this is considered a full reversal and special rules apply.  If both the 
incoming and outgoing moves are lines, the corner is always considered an outside corner, and an arc 
move of approximately 180o is added.  If one or both of the moves is an arc, PMAC will check for 
possible inside intersection of the compensated moves.  If such an intersection is found, the corner will be 
treated as an inside corner.  Otherwise, it will be treated as an outside corner with an added 180o arc 
move. 
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Figure 43 – Reversal in Cutter Compensation 

Note on Full Circles 
If a full-circle move is executed while in cutter compensation, and one or both of the ends produces a 
shallow outside corner that is directly blended (no added arc – see the previous section Treatment of 
Outside Corners), the compensated arc move will be extended beyond 360o, and PMAC may produce just 
a very short arc, 360o shorter than what is desired (making it appear that the circle has been skipped. 

Typically, while this is the result of sloppy programming – an outside corner with a full circle causes an 
overcut into the circle – many machine designers may want to permit slight cases of this.  Coordinate 
system parameter Isx97 defines the shortest arc angle that may be executed; the longest arc angle is 360o 
plus this angle. 

The default value of Isx97 sets a minimum arc angle of one-millionth of a semi-circle, enough to account 
for numerical round-off, but sometimes not enough for compensated full circles.  To handle these cases, 
Isx97 should be set to a somewhat larger value. 
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Figure 44 – Failure When Compensation Extends Full Circle 

Speed of Compensated Moves 
Tool center speed for the compensated path remains the same as that programmed by the F parameter.  
On an arc move, this means that the tool edge speed (the part of the tool in contact with the part) will be 
different from that programmed by the fraction Rtool/Rarc. 

Changes in Compensation 
PMAC permits changes both to the radius of compensation and the direction of compensation while the 
compensation is active.  It is important to understand exactly how PMAC changes the compensated path 
in these cases. 

Radius Magnitude Changes 
Changes in the magnitude of compensation (new CCR values) made while compensation is active are 
introduced linearly over the next move.  When this change is introduced over the course of a LINEAR-
mode move, the compensated tool path will be at a diagonal to the programmed move path.  When this 
change is introduced over the course of a CIRCLE-mode move, the compensated tool path will be a 
spiral. 

Compensation Direction Changes 
Changes in the direction of compensation (between CC1 and CC2) made while compensation are 
generally introduced at the boundary between the two moves.   
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Figure 45 – Cutter Compensation Change of Direction 

However, if there is no intersection between the two compensated move paths, the change is introduced 
linearly over the next move. 
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Figure 46 – Cutter Compensation Change of Direction – No Intersection 

How PMAC Removes Compensation 
PMAC gradually removes compensation over the next LINEAR or CIRCLE-mode move following the 
CC0 command that turns off compensation.  This lead-out move starts at a point one cutter radius away 
from the intersection of the lead-in move and the first fully compensated move, with the line from the 
programmed point to this compensated endpoint being perpendicular to the path of the first fully 
compensated move at the intersection. 
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Note that few controllers can make their lead-out move a CIRCLE-mode move.  This capability permits 
releasing contact with the cutting surface very gently, important for fine finishing cuts. 

Inside Corner 
If the last fully compensated move and the lead-out move form an inside corner, the lead-out move starts 
directly from this point to the programmed endpoint.  When the lead-out move is a LINEAR-mode move, 
the compensated tool path will be at a diagonal to the programmed move path.  When the lead-in move is 
a CIRCLE-mode move, the compensated tool path will be a spiral. 
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Figure 47 – Removing Compensation – Inside Corner 

Outside Corner 
If the last fully compensated move and the lead-out move form an outside corner, the last fully 
compensated move ends at a point one cutter radius away from the intersection of the last fully 
compensated move and the lead-out move, with the line from the programmed point to this compensated 
point being perpendicular to the path of the fully compensated move at the intersection.   

PMAC then adds a circular arc move with radius equal to the cutter radius, ending at a point one cutter 
radius away from the same, with the line from the programmed point to this compensated endpoint being 
perpendicular to the path of the lead-out move at the intersection. 

Finally, PMAC gradually removes compensation over the lead-out move itself, ending at the programmed 
endpoint of the lead-out move. .  When the lead-out move is a LINEAR-mode move, this compensated 
tool path will be at a diagonal to the programmed move path.  When the lead-in move is a CIRCLE-mode 
move, this compensated tool path will be a spiral. 
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Figure 48 – Removing Compensation – Outside Corner 

Note that this behavior is different from changing the magnitude of the compensation radius to zero while 
leaving compensation active.  An arc move is always added at the corner, regardless of the setting of I89.  
This ensures that the lead-out move will never cut into the last fully compensated move. 

Failures in Cutter Compensation 
It is possible to give PMAC a program sequence in which the cutter compensation algorithm will fail, not 
producing desired results.  There are three types of reasons the compensation can fail. 

Inability to Calculate Through Corner 
First, if PMAC cannot see ahead far enough in the program to find the next move with a component in the 
plane of compensation before the present move is calculated, then it will not be able to compute the 
intersection point between the two moves.  This can happen for several reasons: 

• There is a move with no component in the plane of compensation (i.e., perpendicular to the plane of 
compensation, as in a Z-axis-only move during XY compensation) before the next move in the plane 
of compensation. 

• There is more than one DWELL before the next move in the plane of compensation. 
• Program logic causes a break in blending moves (e.g., looping twice through a WHILE loop). 

If PMAC cannot find the next move in time, it will end the current move as if the intersection with the 
next move would form an outside corner.  If the next move, when found, does create an outside corner, or 
continues straight on, compensation will be correct.  On an outside corner, an arc move is always added at 
the corner, regardless of the setting of I89.  However, if the next move creates an inside corner, the path 
will have overcut into the corner.  In this case, PMAC will then move to the correct intersection position 
and continue with the next move, leaving the overcutting localized to the corner. 
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Figure 49 – Failures in Cutter Compensation 

Inside Corner Smaller Than Radius 
Second, if the compensated path produces an inside corner with one of the moves shorter than the cutter 
radius, the cutter compensation will not work properly.  This situation results in a compensated move that 
is in the opposite direction from that of the uncompensated move, and there will be overcutting at the 
corner. 

Inside Arc Radius Smaller Than Cutter Radius 
Third, if the program requests an arc move with compensation to the inside, and the programmed arc 
radius is smaller than the cutter radius, then no proper path can be calculated.  In this case, PMAC ends 
the program at the end of the previous move with a run-time error, setting the coordinate-system run-time 
bit in the status word to 1. 

Single-Stepping While In Compensation 
It is possible to execute moves in single-step mode while cutter compensation is active, but be aware of 
several special considerations for this mode of operation.  Because of the need for the program to see 
ahead far enough to find the next move in the plane of compensation before the current move can be 
executed, the execution of an S single-step command may not produce the intuitively expected results.  
The single-step command on a move in compensation causes the preliminary calculations for that move to 
be done, not for the move to be actually executed.  This has the following ramifications: 

• A single-step command on the lead-in move for compensation will produce no motion, because the 
next move has not yet been found.   

• Single-step commands on compensated moves in the plane of compensation will cause the previous 
move to execute.   

• A single-step command on the lead-out move will cause both the last fully compensated move and the 
lead-out move to execute. 
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Unlike many controllers, PMAC can execute non-motion program blocks with single-step commands 
with cutter compensation active.  However, be aware that the execution of these blocks may appear out of 
sequence, because the motion from the previous programmed move block will not yet have been 
executed. 

Synchronous M-variable assignments in this mode are still buffered and not executed until the actual start 
of motion execution of the next programmed move. 

Lookahead 
A move exactly perpendicular to the plane of compensation will temporarily turn off compensation 
because PMAC does not know on which side of the point to compensate.  A tiny component of the move 
in the plane of compensation is enough to keep compensation turned on. 

Two DWELL commands in between moves will temporarily turn of compensation at the point of the 
DWELL.  Also a looping structure such as the HILE (condition)WAIT or a WHILE loop with no 
motion commands will temporarily turn off compensation. 

Axis Transformation Matrices 
PMAC provides the capability to perform matrix transformation operations on the X, Y, and Z axes of a 
coordinate system.  These operations have the same mathematical functionality as the matrix forms of the 
axis definition statements, but these can be changed on the fly in the middle of programs; the axis 
definition statements are meant to be fixed for a particular application. 

The matrix transformations permit translation, rotation, scaling, mirroring, and skewing of the X, Y, and 
Z axes.  They can be useful for English/metric conversion, floating origins, making duplicate mirror 
images, repeating operations with angle offsets, and more. 

The basic mathematical operation that the matrix operation performs is as follows: 
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The base X, Y, and Z coordinates are those defined by the axis definition statements.  Those statements 
may or may not incorporate a matrix relationship between the axes and motors.  If there is a matrix 
relationship in the definition statements, these matrix operators will act "on top" of that relationship. 

Setting Up the Matrices 
The first thing that must be done is to define a buffer space for the transformation matrices.  Use the on-
line command DEFINE TBUF{constant}, where {constant} represents the number of matrices 
to be defined.  Each matrix is set automatically to the identity matrix at this command.  This needs to be 
done only once; as the space and the values for the matrices will be kept in battery-backed RAM until a 
DELETE TBUF or $$$*** command is given. 

Using the Matrices 
Inside the motion program, the TSEL{constant} (transform select) command picks one of the 
matrices that has been defined for use as the active transformation matrix for the coordinate system.  This 
matrix will be in force for the next calculated moves in the program. 

Once selected, the matrix may be processed with several program commands.  The processing serves to 
put new values in the selected matrix.  The matrix is used, with whatever values it contains at the time, 
during the calculation of any move involving the X, Y, or Z axes. 

Initializing the Matrix 
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The TINIT (transform initialize) command makes the selected matrix the identity matrix, so that 
transformed positions would equal untransformed positions. 

Absolute Displacement 
The ADIS{constant} (absolute displacement) command sets up the displacement portion of the 
selected matrix by making the three displacement values (D1, D2, & D3) equal to the three Q-variables 
starting with the one specified with {constant}.  For instance, ADIS 25 would make the X-
displacement equal to Q25, the Y-displacement equal to Q26, and the Z-displacement equal to Q27. 

Incremental Displacement 
The IDIS{constant} (incremental displacement) command changes the displacement portion of the 
selected matrix by adding the values of the three Q-variables to the existing displacement. 

Absolute Rotation/Scaling 
The AROT{constant} (absolute rotation) command sets up the rotation/scaling portion of the selected 
matrix by making the nine rotation/scaling values equal to the nine Q-variables starting with the one 
specified by {constant}.  For instance, AROT 71 would make R11 in the matrix equal to Q71, R12 
equal to Q72, and so on, to R33 equal to Q79. 

Incremental Rotation/Scaling 
The IROT{constant} (incremental rotation) command changes the rotation/scaling portion of the 
selected matrix by multiplying it by a matrix consisting of the nine Q-variables starting with the one 
specified by {constant}.  This has the effect of adding angles of rotation, and multiplying scale 
factors.  For instance IROT 100 would multiply the existing matrix by multiplying it by a matrix 
consisting of the values of Q100 to Q108. 

After using any of these commands, any changes to the Q-variables used do not change the selected 
matrix.  Another command using the Q-variables must be executed to change the selected matrix. 

When using axis matrix transformation for scaling, do not use the R radius specification for circular 
interpolation, because the radius will not scale with the axes.  Use the IJK center vector specification 
instead. 

Calculation Implications 
It takes one to two milliseconds to perform the matrix transformation for every move involving the X, Y, 
or Z axis.  This will decrease the maximum block execution rate for the motion program.  A two-axis 
system that was capable of 400 blocks per second without matrix transformation will be capable of only 
about 250 blocks per second once matrix transformation has been activated with the TSEL command.  To 
disable the matrix transformation calculations, use TSELECT0, which deselects all matrices, and stops 
the matrix calculation overhead. 

Examples 
These concepts are probably best illustrated with some simple examples.  In actual use, much more 
sophisticated things may be done with the matrices, especially with the inclusion of math and logic. 
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Scaling Example 
If the axis definition statements scaled the axes in units of millimeters, but it should be programmed in 
inches at least temporarily, set up the matrix as follows: 
TSEL 1 ; Select Matrix 1 
Q11=25.4  Q12=0  Q13=0 ; Variables for first row 
Q14=0  Q15=25.4  Q16=0 ; Variables for second row 
Q17=0  Q18=0  Q19=25.4 ; Variables for third row 
AROT 11 ; Use Q11-Q19 for matrix 

Notice that pure scaling uses only the primary diagonal of the matrix.  The scaling is done with respect to 
the origin of the coordinate system.  Of course, the Q-variable values do not have to be assigned three per 
command line, but this is for program readability. 

Rotation Example 
To rotate the coordinate system 15 degrees about the origin in the XY plane.  Set up the matrix as 
follows: 
TSEL 2 ;Select Matrix 2 
Q40=COS(15) Q41=SIN(15) Q42=0 ;Variables for first row 
Q43=-SIN(15) Q44=COS(15) Q45=0 ;Variables for second row 
Q46=0 Q47=0 Q48=1 ;Variables for third row 
AROT 40  ;Assign these values to the  
 ;rotation portion 

This transformation rotates the points 15 degrees counterclockwise in the XY plane relative to fixed XY 
axes when viewed from the +Z axis in a right-handed coordinate system (i x j = k).  Alternately stated, it 
rotates the XY axes 15 degrees clockwise in the XY plane relative to fixed points when viewed from the 
+Z axis in a right-handed coordinate system. 

Displacement Example 
To offset the Y and Z axes by five units and 2.5 units, respectively, leaving the X axis unchanged.  Set up 
the matrix as follows: 
TSEL 3 ; Select Matrix 3 
Q191=0 ; First variable 
Q192=5 ; Second variable  
Q193=2.5 ; Third variable 
ADIS 191 ; Assign these values to the displacement  
 ; portion 

Second Rotation Example 
To rotate the coordinate system 15 degrees in the XY plane, as in the first rotation example, but about an 
arbitrary point (P1, P2) instead of the origin.  In this case, the rotation matrix is the same as for a rotation 
about the origin, but a displacement vector is also required.  In general, for a rotation of angle θ about a 
point (x

0
, y

0
), the displacement vector required is: 

( )[ ]sinycos10x 0−−−  
( )[ ]cos1ysinx 00 −+  

[            0             ] 
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To implement this in PMAC code, assuming that Q40 through Q48 are as in the above rotation example, 
we add: 
Q50=P1*(1-COS(15))-P2*SIN(15)  
Q51=P1*SIN(15)+P2*(1-COS(15)) 
Q52=0  
AROT40 ; Create 15 degree rotation 
ADIS50 ; Create proper displacement 

Current Position Transformation 
When a coordinate system is transformed, it is important to realize that the starting positions for the 
upcoming move are transformed, and this has an effect on an axis not explicitly commanded in this 
upcoming move.  In absolute mode, any axis not explicitly commanded implicitly receives a command to 
its existing position, in this case, the transformed position.  For example, if the absolute move X1Y0 is 
followed by a 45° rotation, this position is transformed to X0.707Y0.707.  If this is followed by an 
absolute X2 move command, this is equivalent to an X2Y0.707 command, not to an X2Y0 command. 

Entering A Motion Program 
The motion program statements are entered one program buffer at a time into PMAC.  For each program 
buffer, the first step is to open the buffer for entry with the OPEN PROG n command (where n is the 
buffer number — with a range of 1 to 32,767).  Next, if there is anything currently in the buffer that 
should not be kept, it should be emptied with the CLEAR command.  Existing lines cannot be edited or 
new lines cannot be inserted between existing lines. However, new lines can be appended to the end 
(with, of course, the option of clearing the whole buffer first). 

Typically, in program development, the editing will be done in a host-based text editor such as the PMAC 
Executive Program editor, and the old version of the PMAC program buffer is cleared every time the new 
version is downloaded to the card.  After the last of the program statements is downloaded, a CLOSE 
command should be sent to the card to close the program buffer. 

It is a good idea to issue a few commands before the OPEN PROG n command to make sure the buffer 
space is ready for the program statements.  First, you want to make sure that no motion programs are 
currently executing (except for rotary programs). The A (for the addressed coordinate system) or <CTRL-
A> (for all coordinate systems) abort command can be used to make sure execution has stopped.  Also 
make sure that no other buffer is open; use the CLOSE command for this.  Next, to make sure that all the 
open buffer space has not been taken up with a data gathering buffer; use the DELETE GATHER 
command for this. 

All of these (on-line) commands can be included in the editor file with the actual motion program 
statements, even though they are not part of the actual program.  They would not be reported as part of the 
program if PMAC were asked to LIST PROG n.  (The PMAC Executive program editor, as part of its 
Upload function, appends these commands to the returned program.) 

The advisable format to use when working in a text editor is: 
A 
CLOSE 
DELETE GATHER 
OPEN PROG n 
CLEAR 
{program statements} 
CLOSE 
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After the program has been downloaded and the buffer closed, a coordinate system that is to execute this 
program must be pointed to the program with the B command.  For example, B6 would point the 
addressed coordinate system's program counter to the beginning of motion program 6.  This can be 
confirmed with the PC (program counter) query command, which should return P6:0 if it is pointing to 
the top of program 6.  If it returns a <BELL> character, it is not pointing to any valid program.  Once the 
coordinate system is pointing to the top of the program, execution can be started with the R command.  
The B and the R commands can be combined into one command line, such as B6R. 

Learning a Motion Program 
It is possible to have PMAC learn lines of a motion program using the on-line LEARN command.  In this 
operation, the axes are moved to the desired position and the command is given to PMAC.  PMAC then 
adds a command line to the open motion program buffer that represents this position.  This process can be 
repeated to learn a series of points. 

The motors can be open loop or closed loop as they are moved around.  At the time of the LEARN 
command, PMAC reads the motor commanded positions (in open-loop, commanded positions are always 
equal to actual positions) and converts them to axis positions by effectively executing a PMATCH 
command, inverting the axis definition equations. 

If the LEARN command specifies which axes are to be learned (e.g. LEARN(A,B,C) ), only those axis 
commands will be added to the program.  If the LEARN command does not specify any axes, commands 
for all nine axis names are added to the motion program. 

The LEARN function can only add axis move commands to the program.  Any other parts of the motion 
program, including math, logic, move modes, and move times, must be sent to the open motion program 
buffer directly. 

Motion Program Structure 
Typically, PMAC motion programs are combinations of movement specification statements, calculation 
statements, and logic statements.  The movement specification statements are used to generate 
commanded trajectories for the axes, according to the rules explained in the Program Trajectory section of 
this manual.  The calculation statements can be used to determine the parameters for the movement 
specifications, and the logic statements can be used to determine which movement statements get 
executed, and when. 

Basic Move Specifications 
The simplest motion programs just contain movement specifications.  For example: 
F5000 
X10000 
DWELL1000 
X0 

(Remember that in entering this program, surround these statements with the buffer control commands as 
explained previously.) 

The F (feedrate) statement specifies a speed, the X statements command actual moves for the X-axis, and 
the DWELL statement commands a halt for the specified time.  This program simply specifies a basic 
move and return. 
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Defaults 
A program this simple relies on quite a few default settings and modes.  This one uses the following 
defaults: LINEAR move mode, ABS (absolute) axis specification, with Ix87 and Ix88 specifying the TA 
and TS acceleration times, respectively. 

Controlling Parameters 
What the values in the program mean can depend on external parameters as well.  The X positions are in 
user units, as defined in the axis definition statement for the X-axis.  The F speed specification is in terms 
of user position units divided by feedrate time units, as set by variable Ix90 for the coordinate system. 

Simultaneous Moves on Multiple Axes 
To perform simultaneous coordinate moves of several axes in a coordinate system, simply put their move 
specifications on the same line.  For instance, if we changed the above program to: 
F5000 
X10000 Y10000 Z10000 
DWELL1000 
X0 Y0 Z0 

the X, Y, and Z axes will command a simultaneous move to 10000, stay there for one second, then 
command a simultaneous move to 0.   

If an axis in the coordinate system is not commanded in a given move line, a zero-distance move for that 
axis is assumed (note that it is technically performing a move, so it cannot be in-position). 

Sequential Moves 
If the program is in LINEAR, CIRCLE, PVT, or SPLINE mode, and there is more than one move 
command line in a program without a DWELL or DELAY in between (there can be other statements in 
between), the moves will blend together without stopping.  The exact form of the blending will depend on 
the move mode in force (see the Program Trajectory section of this manual).  However, if Ix92 for the 
coordinate system (Move Blend Disable), this blending capability is disabled. 

Adding Logic 
A little logic can be added to make the language more powerful.  Suppose we wanted to repeat the above 
sequence 100 times.  Rather than repeating the above statements 100 times, we can create a loop: 
F5000 
P1=0 
WHILE (P1<100) 
 X10000 
 DWELL1000 
 X0 
 DWELL1000 
 P1=P1+1 
ENDWHILE  

Notice that the F5000 statement is not inside the loop.  By putting it before the loop, we save PMAC 
from having to interpret and execute the statement every time through the loop.  Since it is a modal 
statement, its effect stays in force.  This is not essential, but if loop time is very short, it can make a 
difference. 
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Line Labels 
It is possible to put line labels in the motion program to mark particular sections of the program.  The 
syntax for a line label is N{constant} or O{constant}, where {constant} is an integer from 1 
to 262,143. 

Notice that these are line labels, not line numbers (even though they are specified by number).  A line 
does not require a label; and the labels do not need to be in numerical order.  These line labels are used 
only to specify the jumps in GOTO, GOSUB, and CALL commands (all discussed below). 

GOTO Command 
PMAC provides a GOTO{data} command in its motion program syntax, which causes a jump to line 
label N{data} in the same motion program (without return).  In general, the use of GOTO commands is 
strongly discouraged, because of the tendency to build up programs that are very hard to decipher. 

However, when the {data} in a GOTO command is a variable or expression (e.g. GOTO(P20), it can be 
used to build the equivalent of a structured CASE statement, creating a multiple-pronged branching point.   

Adding Variables and Calculations 
Motion programs can be made a lot more flexible with the use of variables and mathematical calculations.  
The above example program will command the same moves with the same timing every time it is 
executed.  If any parameter for the program would need to be changed, the entire program would need to 
be re-entered (or a different program used).  However, if we use variables in place of the constants, we 
only need to change variable values to change the action of the program: 
F(P2) 
P1=0 
WHILE (P1<P3) 
 X(P4) 
 DWELL(P5) 
 X0 
 DWELL(P5) 
 P1=P1+1 
ENDWHILE 

The variables P2, P3, P4, and P5 could be set by the host with on-line commands (e.g. P2=2000), by a 
PLC program as a result of inputs and/or calculations, or even by another motion program. 

With calculations inside the motion program, we can get even more sophisticated.  General mathematical 
expressions can be built in a PMAC motion program using constants, variables, functions and operators 
(see Computational Features).  The calculations can be done in separate program statements, assigning the 
calculated value to a variable, then using the variable in another statement. Alternately, the expression can 
be used directly in a motion specification statement, in which case the value of the expression is not 
retained after the statement is executed. 
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Subroutines and Subprograms 
It is possible to create subroutines and subprograms in PMAC motion programs to create well-structured 
modular programs with re-usable subroutines.  The GOSUBx command in a motion program causes a 
jump to line label Nx of the same motion program.  Program execution will jump back to the command 
immediately following the GOSUB when a RETURN command is encountered.  This creates a subroutine. 

The CALLx command in a motion program causes a jump to PROG x, with a jump back to the command 
immediately following the CALL when a RETURN command is encountered.  If x is an integer, the jump 
is to the beginning of PROG x; if there is a fractional component to x, the jump is to line label 
N(y*100,000), where y is the fractional part of x.  This structure permits the creation of special 
subprograms, either as a single subroutine, or as a collection of subroutines, that can be called from other 
motion programs. 

Passing Arguments to Subroutines 
These subprogram calls are made more powerful by use of the READ statement.  The READ statement in 
the subprogram can go back up to the calling line and pick off values (associated with other letters) to be 
used as arguments in the subprogram.  The value after an A would be placed in variable Q101 for the 
coordinate system executing the program, the value after a B would be placed in Q102, and so on (Z 
value goes in Q126).   

This structure is useful for creating machine-tool style programs, in which the syntax must consist solely 
of letter-number combinations in the parts program.  Since PMAC treats the G, M, T, and D codes as 
special subroutine calls (see below), the READ statement can be used to let the subroutine access values 
on the part-program line after the code. 

Example 
For example, the command CALL500 X10 Y20 causes a jump to the top of PROG 500.  If, at the top 
of PROG 500, there is the command READ(X,Y), the value with X will be assigned to Q124 (X is the 
24th letter) and the value with Y will be assigned to Q125.  Now the subroutine can work with the values 
of Q124 and Q125 (in this case, 10 and 20, respectively), processing them as needed. 

What Has Been Passed? 
The READ statement also provides the capability of seeing what arguments have been passed (the letters 
listed in the READ statement are those that can be passed).  The bits of Q100 for the coordinate system are 
used to note whether arguments have been passed successfully; bit 0 is 1 if an A argument has been 
passed, bit 1 is 1 if a B argument has been passed, and so on, with bit 25 set to 1 if a Z argument has been 
passed.  The corresponding bit for any argument not passed in the latest subroutine or subprogram call is 
set to 0. 

If the logic of the subroutine needs to know whether a certain argument has been passed to it or not, it 
should use the bit-by-bit AND operator (&) between Q100 and the value of the bit in question.  The value 
of bit 0 is 1, of bit 1 is 2, of bit 2 is 4, and so on (bit value is 2N-1, for the Nth letter of the alphabet).  For 
instance, to see if a D-argument has been passed, the condition would be: 
IF (Q100 & 8 > 0) ... 

D is the fourth letter, so the bit value is 2
3
 = 8.  To see if an S argument has been passed — S is the 19th 

letter, so the bit value is 2
18 = 262,144 — the condition would be: 

IF (Q100 & 262144 > 0) ... 
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PRELUDE Subprogram Calls 
PMAC permits creation of an automatic subprogram call before each move command or other letter-
number command in a motion program or section of a motion program.  If the subprogram starts with a 
READ command, then the move command or letter-number command itself is turned arguments for the 
subprogram call.  This functionality is very useful for executing canned cycles in machine-tool style 
programs, or for turning ordinary move commands into arguments for a subprogram that executes inverse 
kinematic or similar calculations. 

This capability is accomplished through the motion-program PRELUDE command.  To turn on the 
function, declare PRELUDE1 in the motion program, followed by the subprogram call you wish to be 
executed before each subsequent move command or letter-number command.  This subprogram call can 
be declared with a CALL command, or a G, M, T, or D-code, any of which is a special subprogram call.  In 
a PRELUDE1 declaration the value in the subprogram call specifying which subprogram and which line 
must be a constant; it cannot be a variable or expression. 

Once PMAC has encountered a PRELUDE1 command in the program, it will execute the specified 
subprogram call each time it encounters a move command or other letter-number command in the motion 
program (including G, M, T, and D codes, but excluding N and O line labels).  The move command or 
letter-number command must be at the beginning of a program line, or immediately following an N or O 
line label at the beginning of a program line. 

Once PMAC has jumped to the subprogram specified by PRELUDE1, it will treat any move command or 
letter-number command in the subprogram as it normally would; these will not cause another subprogram 
call automatically.  Automatic PRELUDE subprogram calls therefore cannot be nested within each other; 
however, a single PRELUDE subprogram call may be nested within explicit subroutine and subprogram 
calls, and explicit subroutine and subprogram calls may be nested with a single automatic PRELUDE 
subprogram call. 

A new PRELUDE1 command supersedes the existing PRELUDE1 command.  A PRELUDE0 command 
(no arguments necessary) turns off the PRELUDE function. 

Running a Motion Program 
Once the motion program has been entered and the program buffer closed, execute the motion program.  
Since PMAC can store multiple programs at once, the first thing to do is to tell the PMAC coordinate 
system which program to run (remember that it is a coordinate system in PMAC that executes a motion 
program; different coordinate systems may be executing other motion programs at the same time).   

Pointing to the Program 
Pointing to the program is done with the B{constant} command, where the {constant} represents 
the number of the motion program buffer.  Use the B command to change motion programs, and after any 
motion program buffer has been opened.  Do not use it if repeatedly running the same motion program 
without modification. When PMAC finishes executing a motion program, the program counter for the 
coordinate system is set automatically to point to the beginning of that program, ready to run it again. 

Use the PC (program counter) command to see which program the coordinate system is pointing to at the 
time.  A response is received something like P5:0, which means that the coordinate system is pointing to 
motion program 5, at the top (address offset of 0). 
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Running the Program 
Once pointing to the motion program to run, issue the command to start execution of the program.  For 
continuous execution of the program, use the R command (<CTRL-R> for all coordinate systems 
simultaneously), or take the START/ line on the JPAN connector low with the coordinate system selected 
on the FPDn/ lines of the same connector.  The program will execute all the way through unless stopped 
by command or error condition. 

Stepping the Program 
To execute just one move, or a small section of the program, use the S command (<CTRL-S> for all 
coordinate systems simultaneously), or take the STEP/ line on the JPAN connector low with the 
coordinate system selected on the FPDn/ lines of the same connector.  The program will execute to the 
first move DWELL, or DELAY, or if it first encounters a BLOCKSTART command, it will execute to the 
BLOCKSTOP command. 

What PMAC Checks For 
When a run or step command is issued, PMAC checks the coordinate system to make sure it is in proper 
working order.  If it finds anything in the coordinate system is not set up properly, it will reject the 
command, sending a <BELL> command back to the host.  If I6 is set to 1 or 3, it will report an error 
number as well telling the reason the command was rejected. 

PMAC will reject a run or step command for any of the following reasons: 

• A motor in the coordinate system has both overtravel limits tripped (ERR010) 
• A motor in the coordinate system is currently executing a move (ERR011) 
• A motor in the coordinate system is not in closed-loop control (ERR012) 
• A motor in the coordinate system in not activated {Ix00=0} (ERR013) 
• There are no motors assigned to the coordinate system (ERR014) 
• A fixed (non-rotary) motion program buffer is open (ERR015) 
• No motion program has been pointed to (ERR016) 
• After a / or \ stop command, a motor in the coordinate system is not at the stop point (ERR017) 

Implementing a Machine-Tool Style Program 
PMAC permits the execution of machine-tool style RS-274 (G-Code) programs by treating G, M, T, and 
D codes as subroutine calls.  This permits the machine tool manufacturer to customize the codes for their 
own machine, but it requires the manufacturer to do the actual implementation of the subroutines that will 
execute the desired actions.  Many of the codes are quite standard, and Delta Tau has provided examples 
of these.  This section discusses subtler issues involved in implementing the codes. 

G, M, T, and D-Codes 
When PMAC encounters the letter G with a value in a motion program, it treats the command as a CALL 
to motion program 10n0, where n is the hundreds’ digit of the value.  The value without the hundreds’ 
digit (modulo 100 in mathematical terms) controls the line label within program 10n0 to which operation 
will jump — this value is multiplied by 1000 to specify the number of the line label.  When a return 
statement is encountered, it will jump back to the calling program. 

For example, G17 will cause a jump to N17000 of PROG 1000; G117 will cause a jump to N17000 of 
PROG 1010; G973.1 will cause a jump to N73100 of PROG 1090. 

M-codes are the same, except they use PROG 10n1; T-codes use PROG 10n2; D-codes use PROG 10n3.  
Most of the time, these codes have numbers within the range 0 to 99, so only PROGs 1000, 1001, 1002, 
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and 1003 are required to execute them.  To extend code numbers past 100, PROGs 1010, 1011, etc., will 
be required to execute them. 

The manufacturer's task is to write routines for motion programs 10n0 to 10n3 to implement the codes in 
the manner desired.  Once this is done, the method of implementation is invisible to the part programmers 
and machine operators. 

Standard G-Codes 
These are the issues involved in implementing some of the more common G-codes: 

G00 — Rapid Point-to-Point Positioning 
Typically, this code is implemented in PMAC through use of the RAPID command.  Many will have only 
RAPID RETURN as the implementation of this code.  (Since this is a call to N0 of PROG 1000, and the 
N0 label is implied automatically by the beginning of any motion program, do not explicitly add an N0; 
this routine must be at the very top of PROG 1000.)   

If utilizing an external feedrate override signal, and the override should be disabled during RAPID mode, 
set the time base source address variable back to its default value and away from the external source (e.g. 
I193=2054).  Alternately, this variable could be set to another external source if the machine had a 
separate rapid override setting.   

The section of the file to implement G00 would look something like: 

CLOSE 
OPEN PROG 1000 
CLEAR ; To erase old version when sending new 
RAPID ; First actual line of program 
I193=2054 
RET 

G01 — Linear Interpolation Mode 
Typically, this code is implemented in PMAC through use of the LINEAR command.  The simplest 
implementation of this is N01000 LINEAR RET.  If feedrate override is desired, and it could have been 
disabled in RAPID mode, the subroutine should set the time-base source address variable to the register 
containing the external information (e.g. I193=1833). 

G02 — 2D Clockwise Arc Mode 
Typically, this code is implemented in PMAC through use of the CIRCLE1 command.  The simplest 
implementation of this is N02000 CIRCLE1 RET.  If feedrate override is desired, and it could have 
been disabled in RAPID mode, the subroutine should set the time-base source address variable to the 
register containing the external information (e.g. I193=1833). 

G03 — 2D Counterclockwise Arc Mode 
Typically, this code is implemented in PMAC through use of the CIRCLE2 command.  The simplest 
implementation of this is N02000 CIRCLE2 RET.  If feedrate override is desired, and it could have 
been disabled in RAPID mode, the subroutine should set the time-base source address variable to the 
register containing the external information (e.g. I193=1833). 
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G04 — Dwell Command 
This code requires the use of the READ command.  Different dialects of G-codes have the dwell time after 
a P or after an X.  PMAC can handle either; just use a READ (P) or a READ (X) as appropriate; the P-
value would be placed in Q116, and the X-value would be placed in Q124.  The units of time must also be 
considered.  PMAC dwell units are in milliseconds.  If the G04 units are seconds, the value passed must 
be multiplied by 1000.  A typical implementation would be N04000 READ (P) DWELL 
(Q116*1000) RET. 

G09 — Exact Stop 
In some dialects of G-code, this code causes a stop between two moves so that no corner-rounding 
blending between the moves is done.  In PMAC, this can be implemented simply by executing a short 
dwell.  A typical implementation would be N09000 DWELL10 RET. 

G17,G18,G19 — Select Plane 
These codes select the plane in which circular interpolation and cutter radius compensation will be done.  
G17 selects the XY plane, G18 selects the ZX plane, and G19 selects the YZ plane.   In PMAC, this is 
performed by the NORMAL command, which specifies the vector normal to this plane (and is not limited 
to these choices).  The standard PMAC implementation of these codes would be: 
N17000 NORMAL K-1 
RET 
N18000 NORMAL J-1 
RET 
N19000 NORMAL I-1 
RET 

It is important that the RET command be on a separate line here; otherwise when PMAC returns to the 
line that called the subroutine, the NORMAL command would try to pick up more arguments from that 
line. 

To use this information for other routines (such as G68 rotation), set some variable(s) in these routines to 
note what plane has been specified.  The PMAC circular interpolation and radius compensation routines 
do not need such a variable. 

G40, G41, G42 — Cutter Radius Compensation 
Cutter radius compensation can be turned on and off easily with the CC0, CC1, and CC2 PMAC 
commands, corresponding to G40, G41, and G42, respectively.  The subroutines to implement this would 
be: 
N40000 CC0 RET ; Turn off cutter compensation 
N41000 CC1 RET ; Turn on cutter compensation left 
N42000 CC2 RET ; Turn on cutter compensation right 

G90 — Absolute Move Mode 
Typically, this code is implemented in PMAC through use of the ABS command.  The ABS command 
without a list of axes puts all axes in the coordinate system in absolute move mode.  The typical 
implementation would be G90000 ABS RET.  Also if the G-Code dialect has G90 making the circle-
move center vectors absolute, an ABS (R) command should be added to this routine. 
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G91 — Incremental Move Mode 
Typically, this code is implemented in PMAC through use of the INC command.  The INC command 
without a list of axes puts all axes in the coordinate system in incremental move mode.  The typical 
implementation would be G91000 INC RET.  If the G-Code dialect has G90 and G91 also affecting 
the mode of circle-move center vectors (non-standard), an INC (R) command should be added to this 
routine. 

G92 — Position Set (Preload) Command 
If this code is used just to set axis positions, the implementation is very simple: G92000 PSET RET.  
With the return statement on the same line, the program would jump back to the calling line and use the 
values there (e.g. X10 Y20) as arguments for the PSET command.  However, if the code is used for 
other things as well, such as setting maximum spindle speed, the subroutine will need to be longer and do 
the setting inside the routine. 

For example, if G92 is used to preload positions on the X, Y, and Z axes, set the maximum spindle speed 
(S argument), and define the distance from tool tip to spindle center (R argument), the subroutine could 
be: 
N92000 READ(X,Y,Z,S,R) 

IF (Q100 & 8388608 > 0) PSET X(Q124)  ; X axis preload 
IF (Q100 & 16777216 > 0) PSET Y(Q125) ; Y axis preload 
IF (Q100 & 33554432 > 0) PSET Z(Q126)  ; Z axis preload 
IF (Q100 & 262144 > 0) P92=Q119        ; Store S value 
IF (Q100 & 131072 > 0) P98=M165-Q118   ; Store R value 
RET 

The purpose of the condition in each line is to see if that argument has been sent to the subroutine in the 
subroutine call — if it has not, nothing will be done with that parameter (see the previous Passing 
Arguments to Subroutines section).  In the case of the S argument, the value is stored for later use by 
other routines, so that a commanded spindle speed will not exceed the limit specified here.  In the case of 
the R argument, the routine calculates the difference between the current commanded X-axis position 
(M165) and the declared radial position (R argument: Q118) to get an offset value (P98).  This offset 
value can be used by the spindle program to calculate a real-time radial position. 

G94 — Inches (Millimeters) per Minute Mode 
This code sets up the program so that F-values (feedrate) are interpreted to mean length units (inches or 
mm) per minute.  In PMAC, F-values are interpreted to mean a speed (length per time) where the length 
units are set by the axis definition statements, and the time units are set by the coordinate system variable 
Ix90.  Since the units of Ix90 are milliseconds, this routine should set Ix90 to 60,000.  Also, because G94 
is used usually to cancel G95, which interprets F-values as inches (mm) per spindle revolution by using 
the spindle encoder as an external time base source, this routine should return the coordinate system to 
internal time base.  A typical routine would be: 
N94000 I190=60000 ; Feedrate is per minute 
I193=2054 ; Use internal time base 
RET 
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G95 — Inches (Millimeters) per Revolution Mode 
This code sets up the program so that F-values (feedrate) are interpreted to mean length units (inches or 
mm) per spindle revolution.  In PMAC, this requires that the time base for the coordinate system be 
controlled by the spindle encoder.  Feedrate is still interpreted as length per time, but with external time 
base, time is interpreted as proportional to input frequency, and hence, spindle revolutions, giving an 
effective length per revolutions feedrate.  

The subroutine implementing G95 must therefore cause the program to get its time base from the spindle 
encoder and get the constants of proportionality correct.  (Actually some or all of these constants may be 
set up ahead of time.)  This external time base function is performed through a PMAC software feature 
known as the Encoder Conversion Table, which is documented in detail in the Feedback Features section 
of the manual.  Instructions for setting up an external time base are given in detail in Chapter 15, 
Synchronizing PMAC to External Events. 

Briefly, a scale factor between time and frequency must be set up in the conversion table that defines a 
"real-time" input frequency (RTIF).  The motion program then can be written as if it were always getting 
this frequency.  In our case, we will take a real- time spindle speed that is near or greater than our 
maximum.   

For example, we use 6000 rpm (100 rev/sec) as our real-time spindle speed.  In "real time", one spindle 
revolution takes 10 msec, so we want our feedrate to be in units of length per (10 msec), which we 
achieve by setting Ix90 (feedrate time units) to 10.  If we have 4096 counts per spindle revolution (after 
decode) our RTIF would be 4096 x 100 = 409,600 cts/sec = 409.6 cts/msec.  The equation for the 
conversion table scale factor (SF) is: 

SF = 131,072 / RTIF (cts/msec) = 131,072 / 409.6 = 320 

This value must come out to an integer for true synchronization without any roundoff errors.  Usually it is 
easy if the spindle encoder has a resolution of a power of 2.  If not, the real-time spindle speed in rps 
should be a power of 2, and Ix90 would not be an integer. 

This scale factor would be written to the appropriate register in the conversion table.  In general, this 
would not have to be done every time G95 is executed; rather, it would be part of the system setup. 

The typical subroutine for G95 would consist of setting Ix93 and Ix90 for the coordinate system: 
N95000 I190=10 ; PMAC F is length/ 10 msec 
I193=1833 ; Time base source is external 
RET 

G96 — Constant Surface Speed Mode Enable 
This code sets up the programs so that the spindle is put in constant surface speed (CSS) mode.  In this 
mode, the spindle angular velocity is varied in real time so that its surface speed past the tool tip remains 
constant.  Essentially, this means that the angular velocity of the spindle is inversely proportional to the 
radial distance of the tool tip from the spindle center.  Usually this distance is the X-axis position — 
implying that the X-axis zero position is at the spindle center.  Some G-code dialects allow the parts 
program to create an X-axis offset with G92 R (q.v.), which defines what the radial distance is at the 
current X-axis commanded position. 

The method suggested here for CSS mode has the spindle in a separate PMAC coordinate system from 
the other axes.  This allows a spindle program to be executing and reacting at a different rate from the 
main parts program, yet to be ultimately controlled by the parts program through variables and flags.  
This type of spindle program is explained in detail below. 

A G96 code will carry with it a spindle surface speed S code in either feet/minute or meters/minute.  This 
value should be placed in a variable for the spindle program to pick up.  A flag should also be set noting 
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which mode the spindle is in.  Note that spindle mode and speed can be set independently of spindle 
on/off state and direction (for which see M03, M04, M05).  A typical G96 routine using this approach 
would be: 
N96000 READ(S) ; Read spindle surface speed into Q119 
P96=Q119 ; Store spindle speed 
M96=1 ; Flag to mark CSS mode 
RETURN 

G97 — Constant Surface Speed Disable 
This code cancels spindle constant surface speed mode and puts the spindle into a constant angular 
velocity mode.  In this mode, the spindle speed is independent of tool radial position.  With the spindle 
axis in a separate coordinate system, the subroutine executing this code simply sets a variable and a flag 
for that program to see.  Usually, a G97 code will carry with it a spindle speed S code in RPM.  If it does, 
the routine picks it up and puts it into a variable.  If it does not, the routine allows the spindle program to 
keep its last RPM computed under G96 from surface speed and radial distance.  A typical G97 routine 
using this approach would be: 
N97000 READ(S) ; Read spindle RPM into Q119 
IF (M100 & 262144 > 0) P97=Q119 ; Store for spindle prog 
M96=0 ; Cancel CSS mode 

Spindle Programs 
Controlling the spindle axis in PMAC may be done in different ways, depending on what the spindle 
needs to do.  The simplest type of spindle operation, of course, is the one in which the spindle is simply 
asked to move at constant speeds for substantial periods of time in one direction or another.  In this case, 
there is no need to write a spindle motion program; either PMAC just puts out a voltage proportional to 
speed (so the spindle is open-loop as far as PMAC is concerned), or the spindle motor is jogged (under 
PMAC closed-loop control).   

Jogged Spindle 
The jogged spindle motor does not need to be in any coordinate system (it must not be in the same 
coordinate system as the other axes, or it cannot be jogged while a parts program is running), but it is a 
good idea to put it in a different coordinate system, because motors that are not in any coordinate system 
use Coordinate System 1's time base control (feedrate override).   

Spindle speed values simply are scaled and put into jog speed I-variables (Ix22), and the spindle on/off 
functions simply command jog starts and stops (see M03, M04, and M05). 

Open-Loop Spindle 
If using the open loop spindle, write directly to an otherwise unused DAC output register by use of an M-
variable.  For instance, the definition M425->Y:$C00A,8,16,S matches the variable M425 to the 
DAC4 output register.  Any value given to this M-variable will cause a corresponding voltage on the 
DAC4 output line.  In this method, a spindle-on command (see M03, M04) could be M425=P10 or 
M425=-P10, where P10 has been set previously by an S-code.  The spindle-off command (see M05) 
could be M425=0. 

Switching Between Spindle and Positioning 
There are cases where the spindle motor is sometimes used as a regular axis, doing position moves instead 
of steady velocity, and sometimes as a regular spindle.  In this case, the spindle motor will be made an 
axis in the main coordinate system so it can do coordinated moves.  When real spindle operation is 
desired, a pseudo-open-loop mode can be created by setting the motor's proportional gain to zero and 
writing to the output offset register (Ix29).  In this method Ix29 would be treated just as M425 was in the 
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above paragraph.  Of course, a velocity-loop (tachometer) amplifier would be required for this mode of 
operation.  See the example OPENCLOS.PMC for more details.   

Constant-Surface-Speed Spindle 
To perform in constant surface speed (CSS) mode, write a motion program, because the speed must vary 
as a function of another axis position.  The suggested method, shown in the example SPINDLE.PMC is to 
break the move into small time slices with the commanded distance for each slice dependent on the 
system conditions at the time, including commanded speed, mode, and tool radial position. 

If the spindle is to be controlled in open-loop fashion in CSS mode, it would be best to have a PLC 
program modifying the output command (Mx25 or Ix29) as a function of tool radial position.  The 
structure of the PLC program would be like that of the closed-loop motion program example 
SPINDLE.PMC, except no actual move command would be needed; once the math was processed, the 
value would simply be assigned to the appropriate variable. 

Standard M-Codes 
The sections below detail what is involved in implementing the standard M-codes.  It is important to 
realize the difference between an M-code in a program and an M-variable.  They may look the same, but 
to be interpreted as an M-variable, it must be used in an equation or expression.  For instance, M01=1 
refers to M- variable number 1 (usually this sets Machine Output 1), whereas M01 by itself is the M-code 
number 1. 

M-codes are treated as subprogram calls to the appropriate line label of motion program 1001. 

M00 — Programmed Stop 
The routine to execute this code simply needs to contain the STOP command.  This code is looking for 
the line label N0 of PROG 1001, and the beginning of any program is always implicitly N0, so this must 
be at the very top of PROG 1001.  The part of the file to implement this could be: 
CLOSE  
OPEN PROG 1001 ; Buffer control command 
CLEAR ; To erase old when sending new 
STOP ; First line of actual program 
RET ; Will jump back when restarted 

M01 — Optional Stop 
Typically this code is used to do a stop if the Optional Stop switch on the operator's panel is set.  
Assuming this switch is wired into the PMAC Machine Input 1, and variable M11 has been assigned to 
this input (this is the default), then the routine to execute this code could be: 
N01000 IF (M11=1) STOP 
RET 

M02 — End of Program 
Since PMAC recognizes the end of a program automatically, and resets the program pointer back to the 
top of the program, the routine for this code could be empty (RET statement only).  However, in many 
systems, a lot of variables and modes get set to default values here.  A typical end-of-program routine 
might be: 
N02000 M55=0 ; Turn off spindle 
M7=0 ; Turn off coolant 
M2=0 ; Turn off conveyor 
LINEAR ; Make sure not in circular mode 
RET 
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M03 — Spindle On Clockwise 
If the spindle is simply doing constant speed moves, these routines can issue jog commands.  For 
instance: 

M04 — Spindle On Counterclockwise 
N03000 CMD "#4J+" 
RET 
N04000 CMD "#4J-" 

M05 — Spindle Stop 
RET 
N05000 CMD "#4J/" 
RET 

This assumes, of course, that motor #4 on PMAC is the spindle motor and that the counting-up direction 
is clockwise.  Spindle speed will have been determined already in other routines by setting I422 (motor #4 
jog speed). 

If PMAC is controlling the spindle with an open loop voltage, these routines would put a voltage on an 
otherwise-unused analog output by writing to a DAC register.  For example: 
N03000 M402=P97*P9 
RET  
N04000 M402=-P97*P9 
RET 
N05000 M402=0 

This sample assumes M402 is assigned to the DAC4 register (Y:$C00A,8,16,S), P97 is the desired 
spindle speed in RPM, and P9 is the scale factor relating RPM to DAC bits (3,276.7 DAC bits/volt).   

If fancier tasks such as constant surface speed are desired, a separate motion program for the spindle will 
be required.  If these M-codes were to interface with this example, they would be: 
N03000 M55=1 ; Flag for clockwise spindle 
CMD "&2B1010R" ; Start the spindle program 
RET 
N04000 M55=-1 ; Flag for counterclockwise spindle 
CMD "&2B1010R" ; Start the spindle program 
RET 

N05000 M55=0 ; Flag for spindle off 
RET ;  
M07 — Low-Level (Mist) Coolant On 
M08 — High-Level (Flood) Coolant On 
M09 — Coolant Off 
The actual implementation of these M-codes will be machine dependent, but typically it will be simple.  
For instance, if the coolant on/off control were wired into the PMAC Machine Output 7, and the coolant 
high/low control were wired into the PMAC Machine Output 8, the routines could simply be: 
N07000 M7=1 ; Set Mach. Out. 7: Coolant On 
M8=0 ; Clear Mach. Out. 8: Low Level 
RET 
N08000 M7=1 ; Set Mach. Out. 7: Coolant On 
M8=1 ; Set Mach. Out. 8: High Level 



PMAC User Manual 

Writing Programs for PMAC 14-51 

RET 
N09000 M7=0 ; Clear Mach. Out. 7: Coolant Off 
RET 

DWELL statements could be added before and/or after the setting of the outputs if it is desired to provide 
some time for the change to occur.  

M12 — Chip Conveyor On 
M13 — Chip Conveyor Off 
The implementation of these codes will be machine dependent, but typically very simple.  For instance, if 
the conveyor on/off line were wired into Machine Output 2, these routines could simply be: 
N12000 M2=1 ; Set Mach. Out. 2: Conveyor On 
RET 
N13000 M2=0 ; Clear Mach. Out. 2: Conveyor Off 
RET 

M30 — End of Program with Rewind 
See M02 description.  M30 will be essentially equivalent to M02 in most systems but will return to the 
beginning of the program. 

Default Conditions 
Typically, a machine running G-code style programs requires many default values and modes beyond 
what PMAC sets automatically during its power-up/reset cycle.  To set these defaults, it is best to use the 
PLC 1 program, which will be the first thing executed after the automatic power-up/reset cycle 
(effectively extending what is done in this cycle).  The last line in this program should be DISABLE PLC 
1, which prevents repeated execution of the program.  A simple file for such a program could be: 

CLOSE 
OPEN PLC 1 
CLEAR 
M55=0 ; Spindle Off 
P92=3000 ; Maximum spindle RPM 
P95=1000 ; Max spindle accel in RPM/sec 
M70=0 ; English measurements 
DISABLE PLC 1 ; So this is only executed once 
CLOSE 

Rotary Motion Program Buffers 
The rotary motion program buffers allow for the downloading of program lines during the execution of 
the program and for the overwriting of already executed program lines.  This permits continuous 
execution of programs larger than the PMAC memory space, and also real-time downloading of program 
lines (equivalent to SMCC's MDI mode). 

Defining a Rotary Buffer 
Each coordinate system can have a rotary program buffer.  To create a rotary buffer for a coordinate 
system, address that coordinate system (&n) and send the DEFINE ROT {constant} command, 
where {constant} is the size of the buffer in memory words.  Each value in a program (e.g. X1250) 
takes one word of memory.  The buffer should be sized to allow enough room for the distance ahead of 
the execution point you wish to load.  Since most applications utilizing rotary buffers will not strain the 
PMAC memory requirements, it is a good idea to oversize the buffer by a good margin.   

For instance, to load 100 program lines ahead of the execution point in a four-axis application where it is 
using constant values for position (e.g. X1000 Y1200 Z1400 A1600), there should be at least 400 
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words of memory in the buffer, so it would be a good idea to allot 500 or 600 words for the rotary buffer 
(e.g. DEFINE ROT 600). 

Required Buffer State for Defining:  
In order for PMAC to be able to reserve room for the rotary buffer, there can be no data-gathering buffer 
and no rotary program buffer for a higher-numbered coordinate system at the time of the DEFINE ROT 
command.  Therefore, delete any data-gathering buffer first, and define the rotary buffers from high-
numbered to low-numbered.  For instance: 
DELETE GATHER 
&3 DEFINE ROT 200 
&2 DEFINE ROT 1000 
&1 DEFINE ROT 20 

Preparing to Run 
To prepare to run a rotary program in a coordinate system, use the B0 command (go to Beginning of 
program zero — the rotary program) when addressing that coordinate system.  This must be done when 
no buffers are open, or it will be interpreted as a B-axis command.  Once prepared this way, the program 
is started with the R command.  This command can be given either with the buffer open or closed.  If the 
R command is given for an empty rotary buffer, the buffer will simply wait for a command to be given to 
it, then execute that command immediately. 

Opening for Entry 
The OPEN ROT command opens all of the rotary program buffers that have been defined.  Program lines 
following this are sent to the buffer for the host-addressed coordinate system (&n).  Most users of rotary 
program buffers will have only one coordinate system, so this will not be of concern to them, but it is 
possible to switch coordinate systems on the fly and use several rotary buffers at once. 

It is important to realize that after the OPEN ROT command, PMAC is treating as many commands as 
possible as buffered commands, even if it is executing them immediately (some commands mean one 
thing as an on-line command, and another thing as a buffered command).  For instance, an I100 
command is a request for a value of I-variable 100 when buffers are closed, but it is a command to do a 
full circle with a 100-unit radius when a motion program buffer is open (the I-value is the X-axis 
component of the radial vector; since no axis positions are given, they are all assumed to be the same as 
the starting point). 

Staying Ahead of Executing Line 
The key to the handling of a rotary program buffer is knowing how many lines ahead the program is; that 
is, how many program lines have been loaded ahead of the program line that PMAC is executing.  
Typically load ahead until a certain number of lines ahead is reached, and then wait until the program 
catches up to within a smaller number of lines ahead.  A real-time application may work one line ahead of 
the executing line; an application doing periodic downloading of a huge file may get 1000 lines ahead, 
then start again when the program has caught up to within 500 lines. 

PR Command 
The PR (program remaining) command returns the number of lines ahead.  This provides a simple polling 
scheme, but one that is probably not good for tight real-time applications. 

BREQ. Interrupt 
For tightly coupled applications, there are hardware lines to handle the handshaking for the rotary buffer, 
and variables to control the transition points of the lines.  The BREQ (Buffer Request) line goes high 
when the rotary buffer for the addressed coordinate system wants more program lines, and it goes low 
when it does not.  This line is wired into PMAC-PC's programmable interrupt controller, so it can be used 
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to generate an interrupt to the host PC.  The complement, BREQ/, is provided on the JPAN connector.  In 
addition, there is a Buffer Full (BREQ/) status bit for each coordinate system. 

I17 Stops Interrupts 
Variable I17 controls how many lines ahead the host can load and still get BREQ true.  If a program line 
is sent to a rotary buffer, BREQ is taken low, at least temporarily.  If still less than I17 lines ahead of the 
executing line, BREQ is taken high again, which can generate an interrupt.  If I17 or more lines ahead, 
BREQ is left low.  When a rotary program buffer is entered with OPEN ROT or change the addressed 
coordinate system, BREQ is taken low, and then set high if the buffer is less than I17 lines ahead of the 
executing point. 

I16 Restarts Interrupts 
Variable I16 controls where BREQ gets set again as the executing program in the rotary buffer catches up 
to the last loaded lines.  If after execution of a line, there are less than I16 lines ahead in the rotary buffer, 
BREQ is set high.  This can be used to signal the host that more program lines need to be sent. 

By using these two variables and the BREQ line for interrupts, an extremely fast and efficient system for 
downloading programs in real time from the PC is created.  

If the Buffer Runs Out 
If the program calculation catches up with the load point of the rotary buffer, there is no error; program 
operation will suspend until more lines are entered into the rotary buffer.  Technically, the program is still 
running; a Q or A command must be given to truly stop the program. 

If PMAC is in segmentation mode (I13>0) and is executing the last line in the rotary buffer, as long as a 
new line is entered before the start of deceleration to stop, PMAC will blend into the new move without 
stopping. 

Closing and Deleting Buffers 
The CLOSE command closes the rotary buffers just as it does for other types of buffers.  Closing the 
rotary buffers does not affect the execution of the buffer programs; it just prevents new buffered 
commands from being entered into the buffers until they are reopened.   

DELETE ROT erases the rotary buffer for the addressed coordinate system and de-allocates the memory 
that had been reserved for it. 

How PMAC Executes a Motion Program 
It can be important to know how PMAC works its way through a motion program.  A motion program 
differs fundamentally from a typical high-level computer program in that it has statements (moves, 
DWELLs, and DELAYs) that take time; there is an important difference between the calculation time and 
the execution time. 

Basically, a PMAC program exists to pass data to the trajectory generator routines that compute the series 
of commanded positions for the motors every servo cycle.  The motion program must be working ahead 
of the actual commanded move to keep the trajectory generators fed with data.  If the program fails to 
keep ahead, and the time for the next move comes without the proper data in place for the trajectory 
generators, PMAC will abort the program and bring all motors in the coordinate system to a stop. 

Calculating Ahead 
PMAC processes program lines either one or two moves (including DWELLs and DELAYs) ahead.  
Calculating one move ahead is necessary in order to be able to blend moves together; calculating a second 
move ahead is necessary if proper acceleration and velocity limiting is to be done, or a three-point spline 
is to be calculated (SPLINE mode).  For linear blended moves with I13 (move segmentation time) equal 
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to zero (disabled), PMAC calculates two moves ahead, because the velocity and acceleration limits are 
enabled here.  In all other cases, PMAC is calculating one move ahead. 

Note: 

No velocity- or acceleration-limiting done on the fly can be entirely foolproof.  
The more moves that an on-the-fly algorithm looks ahead, the more likely it is to 
be successful in catching all cases, but to be certain, the entire move sequence must 
be evaluated ahead of time. 

Starting Calculations 
Upon the command to start the program, PMAC will calculate program statements down to and including 
the first or second move statement, depending on the mode of the move and the setting of I13.  This can 
include multiple modal statements, calculation statements, and logical control statements.  

Actually the programmed moves will not start executing until I11 milliseconds have passed, even if the 
calculations were finished earlier.  This permits proper synchronization between cards, so one will not 
start before the other.  If I11 is set to zero, the first move will start as soon as the calculations have 
finished. 

Statements down to and including the next move statement, putting the data thus computed into a queue 
for the trajectory generator.  Program calculation is then held up until the trajectory generator starts the 
next move, and PMAC performs other tasks (PLC programs, communications, etc.). 

Calculation of Subsequent Moves 
As soon as the actual execution of a move by the trajectory generating routines starts, a flag is set for 
PMAC to calculate the entire succeeding program insufficient calculation time. 

If PMAC ever cannot finish calculating the trajectory for a move by the time execution of that move is 
supposed to begin, PMAC will abort the program, showing a run-time error in its status word.  Usually 
this happens when move times are made short (a few milliseconds) and/or there is a large amount of 
calculation in between move commands.  The limit on this move block calculation rate is application-
dependent, but generally is several hundred blocks per second. 

If concerned about this move calculation limit, during development make the move times continually 
shorter until PMAC fails.  Then for the final application make sure that the minimum move time is kept 
greater than this, usually with a safety margin of at least 25%. 
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Figure 50 – PMAC Motion Program Recalculation 

When No Calculation Ahead 
There are several conditions in a motion program that break the blending and stop the calculation ahead.  
In these cases, PMAC waits until that operation is finished before it starts calculations on the next move 
or two moves.  During any of these breaks, PMAC will use the I11 calculation time to delay the start of 
the next move. 

DWELL Commands 
A DWELL command in a motion program breaks the blending of moves, so PMAC will not calculate 
through a DWELL.  PMAC does not start the calculation of subsequent moves until after the DWELL time 
is complete.  A DELAY command, by contrast, is really a zero-distance move command of the specified 
time; PMAC does calculate through a DELAY. 

HOME, RAPID Moves 
If a homing search move (HOMEn) or a RAPID mode move is commanded from within a program, it is 
not blended with any other move.  PMAC does not start the calculation of subsequent moves until after all 
motors have completed their commanded moves of these types. 
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PSET Command 
If a PSET command is used within a motion program to redefine axis position(s), PMAC will not blend 
the move before the PSET to the move after.  It will not start the calculation of the subsequent move until 
after the previous commanded move has finished and the PSET command has been executed. 

Double-Jump-Back Rule 
If in the course of trying to calculate the next move, PMAC detects two backward jumps in the logic of 
the program, PMAC will not try to blend the last calculated move to an upcoming move.  These backward 
jumps can be caused either by ENDWHILE statements or GOTO statements; GOSUB, CALL, and RETURN 
jumps do not count here.  The intent of this rule is to prevent PMAC from having to abort a program due 
to insufficient calculation time if it has to loop multiple time on short moves. 

Blending Stopped 
PMAC will instead allow the previous move to come to a stop, and will start calculating the program 
again at the next real-time interrupt (see I8 description), continuing until it finds the next move statement, 
or two more jumps back (in which case the process is repeated).  This permits indefinite waiting loops 
that will not cause PMAC to abort the motion program because of insufficient calculation time. 

Nested Loops 
This double jump-back rule can cause programmers to inadvertently stop blending when they are 
calculating moves within nested while loops.  Consider the following example that attempts to creates 
continuously blended sinusoidal motion generated in the inner loop, using the outer loop to index the size 
of the sinusoid: 
SPLINE1 TA20 
P1=0 
WHILE P1<10) 
 P2=0 
 WHILE (P2<360) 
  X(P1*SIN(P2)) 
  P2=P2+1 
 ENDWHILE 
 P1=P1+1 
ENDWHILE 

The first 360 pieces will be blended (splined) together on the fly as PMAC cycles through the inner loop.  
But when PMAC increments P2 to 360, it hits the first ENDWHILE and jumps back to the inner WHILE 
condition, which is now false, so it jumps down, increments P1, hits the second ENDWHILE, and jumps 
back to the outer WHILE condition, all without encountering a move command. 

At this point, PMAC invokes the double-jump-back rule and lets the last programmed move come to a 
stop.  It does this to prevent the possibility that it might be caught in an indefinitely true set of loops with 
no movement, which could mean that it would not have the next move equations ready in time.  It 
resumes calculations when this move has finished and will start up the next sequence of moves in the 
inner loop.   

To blend all of these moves together continuously, pull the last move of the inner loop outside of the 
inner loop.  This way, two ENDWHILE statements will never be encountered between move commands: 

SPLINE1 TA20 
P1=0 
WHILE (P1<10) 
 P2=0 
 WHILE (P2<359) ; Note that loop  
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   ; stops earlier 
  X(P1*SIN(P2)) 
  P2=P2+1 
 ENDWHILE 
 X(P1*SIN(P2)) ; Last move from  
    ; inner loop 
 P1=P1+1 
ENDWHILE 

Looping to Wait 
There are several methods for holding program execution while waiting for a certain condition to occur.  
Usually this is done with a WHILE loop, but what is done inside the loop has an effect on responsiveness 
and calculation load.   

The fastest execution is the WHILE({condition}) WAIT loop.  As soon as the WAIT command is 
encountered, motion program calculations are suspended until the next real-time interrupt, at which time 
they will re-evaluate the condition.  The motion program effectively becomes like a one-line PLC 
program.  If the next RTI has already occurred, it will re-enter the interrupt service routine immediately 
and re-evaluate the condition.  If this occurs repeatedly, background routines will be starved for time, 
slowing PLCs and communications, or in the worst case, tripping the watchdog timer.  Usually this 
happens only if multiple coordinate systems are in simultaneous WHILE...WAIT loops. 

Of similar speed is an empty WHILE...ENDWHILE loop, or at least one with no motion commands 
inside.  Each RTI, this will execute twice, stopped by the double-jump-back rule.  Calculations resume at 
the next RTI, or if this has occurred already, they resume immediately, with the same possible 
consequences for starving background calculations. 

Using a WHILE({condition}) DWELL single-line loop helps to control the looping rate better, 
giving time for background routines.  The condition is evaluated only once after each DWELL. 

Implications of Calculating Ahead 
The need of the motion program to calculate ahead during a continuous sequence of moves means that 
non-motion actions (particularly the setting of outputs) taken by the program happen before it is thought 
they would by one or two moves.  For variables that are only used within the program, this is no problem, 
because everything happens sequentially within the program. 

It is possible to move these non-motion actions to a point one or two moves later in the program to get the 
actions to occur when they are desired.  However, this makes the program extremely difficult to read as 
far as the proper sequence of operations. 

Synchronous M-Variable Assignment 
The synchronous M-variable assignment statement is designed to get around this problem.  This type of 
statement uses a double equals sign (==) instead of a single equals sign.  This is a flag to PMAC to hold 
off the actual execution of the statement until the beginning of the move immediately following it, so the 
actual action coincides with the actual motion. 

Synchronous M-variable assignment statements are discussed in detail in the Computational Features 
section of the User's Guide, with syntax instructions under M{constant}=={expression}.  
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SYNCHRONIZING PMAC TO EXTERNAL EVENTS 
Features To Help Synchronize Motion 
PMAC has several powerful features to help in synchronizing the motion under PMAC control to external 
events.  These include position following, commonly known as electronic gearing; time-base control, 
commonly known as electronic cams; position capture, which is very useful for registration applications; 
and position compare, which can be used for precision scanning and measurement applications.  Each of 
these areas is covered in this section. 

Position Following (Electronic Gearing) 
PMAC has several methods of coordinating the axes under its control to axes not under its control.  The 
simplest method is basic position following.  This is a motor-by-motor function, not a coordinate system 
function as time-base following is.  An encoder signal from the master axis (which is not under the 
PMAC control) is fed into one of the PMAC encoder inputs.  Typically this master signal is either from 
an open-loop drive or a handwheel knob.   

Position Following I-Variables 
One or more of the PMAC motors is told that this encoder register is the master (with Ix05).  Ix05 is an 
address I-variable; that is, its value contains the address of the register holding the master position 
information.  Typically this register is that of some processed position data in the Encoder Conversion 
Table.  It is helpful to have done the 1/T interpolation or similar to reduce the quantization noise in the 
sampling of the master encoder (this is done automatically in the default setup). 

The following ratio for each motor is set by Ix07 and Ix08, which can be analogized to the number of gear 
teeth on master and slave in a mechanical following application.  The following function is turned on and 
off with Ix06.  When it is on, the input stream from the master acts just like a trajectory generator, 
creating a series of commanded positions to which the following axis controls.   
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Figure 51 PMAC Motion Program Recalculation 
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Changing Ratios on the Fly 
To vary the following ratio in the middle of an application, change Ix07 alone.  Ix08 is involved in the 
scaling of servo feedback calculations, and so should not be changed in the middle of an application. 

There can be tradeoffs between the resolution of on-the-fly changes and the servo performance of the 
system.  The higher the Ix08 scale factor, the finer the resolution of the changes can be.  However, the 
higher Ix08 is, the lower proportional gain Ix30 can be before internal saturation occurs, and the lower the 
maximum velocity can be before there is internal saturation of those registers.  In general, Ix08 should be 
kept below 1000. 

Superimposing Following on Programmed Moves 
In addition, this following function can be superimposed on calculated trajectories.  This permits, for 
instance, shapes to be cut out of a moving web, where the shape program can be written without regard to 
the web movement, and a master signal from the web compensates for the movement.   

Bit 16 of Ix05 determine whether the following occurs in offset mode, where the reported position of the 
following motor does not reflect the change due to following, or normal mode, in which it does.  Usually 
to superimpose following and calculated moves, use offset mode in which bit 16 is 1 (if the master 
position is taken from X-register $0721, the parameter value would be, for example, I105=$10721). 

Time-Base Control (Electronic Cams) 
A more sophisticated method of coordination to external axes is time-base control, in which the input 
signal frequency controls the rate of execution of moves and programs.  Time-base control operates on an 
entire coordinate system together.  Specify which encoder register is receiving the input frequency, and 
the relationship between the input frequency and the program rate of execution.  This not only varies the 
speed of moves in proportion to the input frequency (all the way down to zero frequency), but also keeps 
total position synchronization.  This permits operations such as multi-pass screw threading. 

What Is Time-Base Control? 
The PMAC motion language expresses the position trajectories as functions of time.  Whether the moves 
are specified directly by time, or by speed, ultimately the trajectory is defined as a position-vs.-time 
function.   

This is fine for a great number of applications.  However, in many applications the PMAC axes is slaved 
to an external axis not under PMAC control (or occasionally, an independent axis under PMAC control in 
a different coordinate system).  In these applications, define the PMAC trajectories as functions of master 
position, not of time. 
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Figure 52 Position Following Parameters 

Real-Time Input Frequency 
The PMAC method for doing this leaves the language expressing position as a function of time, but 
makes time proportional to the distance covered by the master.  This is done by defining a real-time input 
frequency (RTIF) from the master's position sensor, in units of counts per millisecond.  For example, an 
RTIF of 32 cts/msec is defined.  Then, in time-base mode, when the program refers to a millisecond, what 
it is really referring to is 32 counts of the master encoder, whatever physical distance that is.  If move is 
programmed in the slave program to take 2 seconds, it will really take 64,000 counts of the master 
encoder to complete. 

Constraints on Selection of RTIF 
If PMAC had infinite resolution and infinite dynamic range in its time base calculations, the choice of 
real-time input frequency would be entirely arbitrary.  Any frequency can be selected as the RTIF, and a 
motion program can be written for that RTIF.  However, PMAC does its time-base calculations in integer 
arithmetic, which limits the resolution, and in 24-bit registers, which limits the dynamic range. 

These limitations lead to three restraints on the selection of the RTIF: 

• The time base scale factor (TBSF) derived from the RTIF must be an integer.  The value that PMAC 
needs for its calculations is not the frequency in cts/msec, but the inverse of the frequency in msec/ct.  
In order for this number to be in the range of integer values, the rule is to multiply the frequency 
inverse by 217 (131,072).   

• If a value of 100 cts/msec were chosen for RTIF, then the TBSF would be 131,072/100 = 131.072, 
which is not an integer.  PMAC could only accept the integer part of 131, and drift would occur. 
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• A choice of real-time input frequency that is a power of 2 in cts/msec (e.g. 32, 64, 128) will always 
produce an integer TBSF.  Also, RTIF values that are equal to a power of 2 divided by an integer will 
work typically.  For example, 204.8 cts/msec (=2048/10, = 210/10) will yield a TBSF of 217/210*10 = 
640. 

• The time base calculations will saturate at an input frequency (IF) where IF/RTIF equals the servo 
update frrequency in kHz.  At the default servo update frequency of 2.25 kHz and an RTIF of 32 
cts/msec, the maximum input frequency that can be accepted without saturation is 32*2.25 = 72 
cts/msec.  If the system could operate to 100 cts/msec, the choice of RTIF=32 cts/msec would not be 
acceptable, but a choice of RTIF=64 cts/msec would be acceptable (100/64=1.5625<2.25). 

• A choice of RTIF greater than the maximum input frequency is always acceptable. 
• If PVT or SPLINE mode moves are used, the segment times at the RTIF must be an integer number 

of milliseconds.  This means that the RTIF must be chosen so that the total cycle time at the RTIF is 
an integer number of milliseconds. 

• Sometimes this will not be possible unless the resolution of the master encoder is a power of 2.  For 
this reason, it is suggested that the master encoder resolution be selected as a power of 2 (e.g. 1024 
lines/rev instead of 1000 lines/rev). 

• For example, with a 1000 line/rev encoder (4000 cts/rev) on a spindle motor, an RTIF of 200 cts/msec 
corresponds to a speed of 50 revs/sec (3000 rpm), or exactly 20 msec/rev.  However, it yields a TBSF 
of 655.36, which is not an integer. 

• With this encoder, an RTIF that yields an integer TBSF (256 cts/msec yields 512, or 204.8 cts/msec 
yields 640) corresponds to a cycle time that is not an integer. 

• However, with a 1024 line/rev encoder (4096 cts/rev), an RTIF of 204.8 cts/msec corresponds to a 
speed of 50 rps (3000 rpm) for a revolution time of 20 msec, and it yields a time-base scale factor of 
exactly 640.  In this case, the time base function stays locked, and a SPLINE or PVT sequence can be 
written that corresponds to an exact number of spindle revolutions. 

How It Works 
Time-base control works by "lying" to the commanded position update equations that occur every servo 
cycle about the amount of elapsed time since the last servo cycle.  (Variable I10 contains the actual 
amount of time.)   

Note  

The actual time between servo cycles does not change, nor do the dynamics of the 
servo loops.  It is only the rate of the commanded trajectories that change with the 
external frequency, and since all of the trajectories in the coordinate system change 
together, the path through space does not. 

Instructions for Using an External Time-Base Signal 
Using an external time-base signal requires several steps to set up.  However, once the setup is complete, 
the time-base control is automatic.  The steps in the set-up are detailed below. 

Step 1: Signal Decoding 
The signal is input to the PMAC at one of the incremental encoder inputs (Channels A and B).  The signal 
must be either a quadrature signal (as out of an encoder) or a pulse and direction signal (pulse into A, 
direction into B).  For the encoder inputs used (one of the Encoders 1 to 16), Encoder I-variable 0 (I900 
for Encoder 1, I905 for Encoder 2, etc.) controls the decode method, and defines what a count is.  For 
instance, with a quadrature signal into Encoder 4 lines, I915 = 3 or 7 defines four counts per encoder 
cycle, whereas I915 = 2 or 6 defines only two counts per encoder cycle.  The difference between 3 and 7, 
or 2 and 6 is for which sense of the signal does the decoder count up.   
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Make sure that to count up in the direction that the master signal is going. Counting down would imply a 
negative time-base, which PMAC cannot handle. 

Analog Source for Frequency 
PMAC has a single on-board voltage-to-frequency (V-to-F) converter that allows a voltage level input to 
the Wiper line of the JPAN connector (Pin 20 of J2) to control the time base.  The input is 0 to +10V 
analog signal that is converted to a nominal 0 to 250 KHz frequency (25KHz/V).  Jumpers E72 and E73 
ON connect this signal to the Encoder 4 decoder-counter (there is no choice about which encoder).  Make 
sure jumper E24 connects pins 1 and 2 (the default).  I-variable I915, which controls decoding this signal, 
should be set to 4 (pulse and direction, counting up on this signal).   

From this point on, the time-base control can be treated just as if it came from an external frequency 
source.  Note that the default conversion table is set up to handle time-base information from this encoder 
counter.  Refer to the diagram under Control-Panel I/O in the Connecting PMAC to the Machine section 
of this manual. 

Step 2: Interpolation 
Once decoded and counted, the value from the signal is brought into the encoder conversion table once 
per servo cycle, exactly as a position feedback signal would be.  Using the 1/T conversion method here is 
recommended, because this method gives a very good sub-count interpolation of the signal (using timers 
associated with the counter) that significantly enhances the smoothness of the time base information.  
Make sure that the conversion table is set up to process the counter from the input signal this way.  The 
encoder conversion table is set up at the factory to do 1/T conversion on encoder counters 1 through 8.  
See the description of the encoder conversion table for more details. 

Step 3: Time Base Calculation 
A separate entry in the encoder conversion table takes the interpolated position information from the 
above step, subtracts out the interpolated position information from the previous servo cycle, and 
multiplies this difference by a scale factor to produce the time base value for the servo cycle.  (This time 
base value is then a multiplying factor in the position update calculations, so the amount of update is 
proportional to the number of counts received from the time base signal in the last servo cycle.) 

The two set-up items in this step are the source of information (the interpolated "position" register) and 
the scale factor.  Both of these are entries in the encoder conversion table.  See the description of the table 
for more details on how to enter these.  The equation for the time base conversion is: 

172
)FREQ_INPUTFACTOR_SCALE0.100(value % ⋅⋅

=  

where the value (also known as feedrate override value) is what controls the rate of position update when 
it equals 100.0, programs and moves operate in real time (i.e., at the times and speeds specified in the 
program).  SCALE_FACTOR is the integer value that must be determined to set up time base following 
properly.  INPUT_FREQ is the count rate (as determined by the signal and Encoder I-variable 0) in 
counts/millisecond 217 is 131, 072. 

To set the scale factor, decide on a real-timeinput count frequency which is the rate of input counts at 
which the program and moves should execute at the specified rate.  Since this is the rate at which the % 
value will be 100.0, solve it simply for the scale factor:  

)FREQ_INPUT_TIME_REAL(
072,131

FACTOR_SCALE =  

Since the scale factor must be an integer, and 131,072 is a power of two, make the real time input 
frequency a power of two in units of counts/msec.  For instance, if using a system where the typical full-
speed input count frequency is 60,000 counts/second, define the real-time input frequency to be 64 
counts/msec.  This would then make the scale factor 131,072 / 64 = 2,048. 
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So far, all there is only a value in a register proportional to the master frequency.  Now make use of this 
value to control the motion program. 

Step 4: Using the time-base calculation 
Time base values work on a coordinate system.  Each coordinate system has an I-variable that tells it 
where to look for its time base information.  This variable is Ix93 for Coordinate System x.  The default 
values for Ix93 are the addresses of registers that are under software control, not the control of an external 
frequency.  For a coordinate system to be under external time-base control, put the address of the scaled 
time-base value determined above.  For instance, in the default conversion table, this value is at address 
$729 (1833 decimal), so if Coordinate System 1 were to be controlled by this frequency, I193 would be 
set to 1833 (this is always an X-memory word, so X does not need to be specified). 

Once this I-variable has been set up, all motors assigned to this coordinate system will be under the 
control of the external frequency, in programmed and non-programmed moves. 

I-variable Ix94 controls the maximum rate of change of the time-base value for Coordinate System x.  
When commanding the time-base value from the host (with a %n command), this value should be set 
fairly low to produce a nice slewing to the new commanded value.  However, to keep synchronized to an 
external signal as time-base source, this value should be set as high as possible (maximum value is 
8,388,607) so the time base can always slew as fast as the signal.  Setting the value low can improve 
following smoothness at the cost of some slip in the following.  If the Ix94 limit is ever used in external 
time base, position synchronization to the master is lost. 

Step 5: Writing the program 
When writing the program that is to be under external time-base control, simply write it as if the input 
signal were always at the real-time frequency.  When run, the program will execute at a rate proportional 
to the input frequency.  There is full floating-point resolution on the move times and feedrates specified. 

Remember that DWELL commands always execute in real time, regardless of the input frequency.  If you 
want pauses in your program that are proportional to an input frequency, use the DELAY command, not 
DWELL. 

Time-Base Example 
There is a web of material moving at a nominal speed of 50 inches per second.  There is an encoder on the 
web that gives 500 lines per inch.  There is a crosscutting axis under PMAC control.  When the web is 
moving at nominal speed you want to make a cutting move in 0.75 seconds and be ready to start another 
move 2.50 seconds later.  The web encoder is attached to Encoder 2 input lines. 

Step 1: Signal Decoding 
Since the web encoder is Encoder 2, I905 controls the decode.  For maximum resolution, set I905 to 3 or 
7 for 4x decode.  Try 3 first.  Looking in the list of suggested M-variables in the manual, notice that the 
encoder position M-variable for this encoder is M201.  Make the definition for M201 and query its value 
repeatedly (probably using the Executive program Watch window) while turning the web encoder in the 
direction it will be going in the application.  If the value increases as the encoder is turned, I905 is set 
properly.  If it decreases, change I905 to 7.  (If it does not change, check the connections.) 

Step 2: Interpolation 
Next look at the current set-up of he encoder conversion table.  The easiest way to do this is through the 
Configuration menu of the PMAC Executive program.  If this is not available, command PMAC with 
RHY:$720,16, which causes PMAC to report the contents of addresses Y:$720 to Y:$72F — the set-up 
data for the table.  We get back something like this: 
 00C000 00C004 00C008 00C00C 00C010 00C014 00C018 
 00C01C 400723 000295 000000 000000 000000 000000 
 000000 000000 
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(The values shown here are the default values for the table.)  The second value returned (from address 
Y:$721) shows a 1/T conversion of Encoder 2, which occupies registers $C004 to $C007 (49156 to 
49159).  This gives us our desired sub-count data for smoothness.  We do not have to change anything 
here.  However, if the entry read C0C004, we could change it by commanding  

secm
counts100

sec
counts000,100

cycle
counts4

inch
cycles500

sec
inches50

=

=⋅⋅  

WY:$721,$00C004. 

Step 3: Time-Base Calculation 
Now set up an entry in the table to convert the interpolated position to time base format.  Looking at the 
values reported above, notice that the ninth entry (from address Y:$728),400723, is a time-base 
conversion.  However, its source is address $723, which is the interpolated position from Encoder 4, not 
Encoder 2 as it should be.  To change it, command WY:$728,$400721. 

Now compute the scaling factor.  Look at the nominal speed of 50 inches/sec, the resolution of 500 
cycles/inch, and the 4x decode, and calculate: 

Since the math works out more easily if this number is a power of two, declare the real-timecount rate to 
be 128 counts/msec.  Then calculate the scale factor as 131,072 / 128 = 1024.  Enter the scale factor by 
commanding WY:$729,1024 (note that the value can be entered as a decimal number by omitting the 
dollar sign). 

Step 4: Using the Time-Base Calculation 
Since working in Coordinate System 1, assign I193 to $729 (1833 decimal) to point to this time base 
value.  Set I194 to the maximum value of 8,388,607 so we do not lose synchronicity on rapid changes. 

Step 5: Writing the Program 
In writing the program, work at the real-timeinput frequency, which differs from the nominal speed that 
was started with, in this case, it is exactly 28% faster.  Therefore, any programmed speeds would be 28% 
higher; any programmed times would be 28% less.  Take the nominal cut time of 750 msec (0.75 sec) and 
multiply it by 100/128 to get exactly 585.9375 msec.  The 2500 msec return is similarly scaled to 
1953.125 msec.  (If these numbers do not come out exactly in the program, put the math directly in the 
program; PMAC calculates with 48-bit floating-point precision.)  There will be a main program loop 
something like this: 
WHILE (M11=1)  ; Cut as long as input is true 
 TM 585.9375 ; Cut move time 
 X10000 ; Actual cut move 
 DELAY 500 ; Hold; part of 1953.125 msec return 
 TM 953.125 ; Return time; part of 1953.125 msec 
 X0 ; Actual return move 
 DELAY 500 ; Hold; part of 1953.125 msec return 
ENDWHILE 

Triggered Time Base 
The time-base techniques discussed so far keep the slave coordinate system locked perfectly to the 
master, but they do not provide a way of synchronizing automatically to a particular point on the master.  
Thus, the slave cycle can be out of phase with the master cycle, and some special technique, usually 
involving position capture from a registration mark, must be used to bring the cycles in phase with each 
other.   
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Many time-base applications do not require the master and slave cycles to be in phase with each other (for 
instance, cutting blank sheets of paper to length rather than printed pages), and others have to be 
continually re-registered due to stretching, slippage, or uneven spacing.  These types of applications can 
use the standard time base function. 

However, applications that do need to be in phase with the master, and in which a registration procedure 
to do this is difficult or impossible, can use the triggered time base feature of the conversion table.  This 
technique permits perfect synchronization to the position of the master that is captured by a trigger, by 
freezing the time base until the trigger is received, then starting the time base referenced to the position 
that was captured by that trigger. 

The triggered time-base entry in the conversion table is similar to the standard time-base entry.  It is a 
two-line entry, with the first line specifying the process and the source address for the master encoder 
data, and the second line specifying the time-base scale factor.  There are two important differences 
between the triggered time-base entry and the standard time base entry.  First, the value specifying the 
process is different, and it is changed during the process of triggering ($90, $A0, and $B0, versus the $40 
for standard time-base).  Second, the source address is that of the actual master encoder counter registers, 
not the processed encoder data in the conversion table.  The scale factor is the same as for the standard 
time-base.  The rules for this entry are discussed in detail in the instructions for the conversion table. 

Instructions for the Triggered Time-Base 
Using the triggered time-base feature involves proper setup of I-variable values, M-variable definitions, 
and conversion table entries (these can be done ahead of time), writing motion programs, and writing PLC 
programs.  Each of these is covered in this section, first with a general explanation, then with a specific 
example. 

Step 1: Signal Decode Setup 
The signal decoding of the master signal is the same as for standard time-base: the quadrature or pulse 
and direction signal must be decoded so that the counter counts up. This is set with Encoder I-variable 0 
(I900, I905, etc.). 

Step 2: Interpolation and Time-Base Setup 
The triggered time-base conversion in the encoder conversion table handles both the 1/T count 
interpolation and the time-base calculation from the interpolated value.  In the initial setup, a triggered 
time-base entry is created in the conversion table, usually in the running (not frozen or waiting for trigger) 
state.  The time base scale factor is also entered here; it is calculated in exactly the same way as for the 
standard time base. 

Step 3: Writing the Motion Program 
In writing the motion program that is to use triggered time base, all of the axes must be brought to a stop 
at the point where they will wait for the trigger.  If this is not at the beginning of the motion, the section 
should be preceded immediately by a DWELL command.   

At the start of the calculations for the moves that are to be started on the trigger, the time base should be 
frozen to prevent the move from starting.  Use an M-variable that has been assigned to the process bits for 
the triggered time base entry in the conversion table.  If the previous moves were done working from a 
different time-base source, the time-base address for the coordinate system (Ix93) should be changed to 
the triggered time-base entry.   

These commands in the motion program are followed immediately by the calculations and commands for 
the first move(s) that are to be started on the trigger.  With the time-base frozen, PMAC will perform all 
of the calculations, but not start actual execution of these moves.  Variable I11 (calculation delay) should 
be set to 0, so PMAC will be ready to start the move as soon as the time base starts. 
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Step 4: Arming the Trigger 
The motion program that calculates the moves cannot arm the trigger itself without having a chance that 
the trigger could occur before the calculations are done.  If this were to happen, the program would be 
behind the desired synchronization.  Therefore, for reliable operation, the trigger should be armed by a 
task that cannot execute until all of the move calculations are done, usually a PLC program.  Arming the 
trigger requires just one simple conditional branch in a PLC program; it just looks to see if the time base 
is frozen, and if it is, the PLC program arms the trigger.  Since the PLC program cannot interrupt the 
motion program, this is guaranteed to happen after the motion program has finished the calculations for 
the move. 

Step 5: Starting on the Trigger 
Once the trigger has been armed, PMAC waits for the position-capture trigger to occur on the master 
encoder. Encoder/Flag I-variables 2 and 3 determine which edge(s) of which signal(s) cause the trigger.  
When PMAC sees that the trigger has occurred, it starts the time base, using the captured master position 
as the starting point for the time base. 

Triggered Time-Base Example 
Motor #1 is the A-axis in Coordinate System 1.  It is a rotary axis with a 2500 line-per-revolution encoder 
on the motor, and its load is geared down from the motor at a 3-to-1 ratio.  It is to be slaved to a master 
encoder connected to PMAC on Encoder 4.  The master encoder has 4096 lines per revolution, and 
typically rotates at about 600 rpm.  After being given the command to run, the X-axis must wait for the 
index pulse of the master and for 45 degrees past it.  For the next 36 degrees of the master, it must 
accelerate up to speed, then run at speed for 144 degrees of the master, and finally decelerate over 36 
degrees of the master.  This move must cover one full revolution of the A-axis. 

For this example, use the triggered time-base, triggering from the master encoder's index pulse.  Choosing 
600 rpm as the real-time speed for the master, compute the real-time input frequency (RTIF) in 
counts/msec: 

secm
counts

84.163
secm1000

sec
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counts
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The time-base scale factor (SF) is: 

)decimal(800
84.163

072,131
RTIF

072,131SF ===  

 At the real-time speed of 600 rpm (10 rps), one revolution of the master takes 100 msec; so 45 degrees of 
the master takes 12.5 msec, and so on. 

Set-up and Definitions 
I915=3 ; x4 decode of ENC 4, set to count up in  
 ; direction of motion 
I917=1 ; ENC 4 capture trigger on rising edge of index  
 ; pulse 
WY:$072A,$A0C00C,800 ; Add triggered time base entry to end of default  
 ; conversion table; process $A0 is triggered time  
 ; base, running (post-trigger); $C00C points to 
ENC4  
 ; registers. Scale factor is 800 decimal 
M199->Y:$072A,16,8 ; Process bits of conversion table entry 
&1 ; Address Coordinate System 1 
#1->83.33333333A ; Motor 1 is A-axis in C.S.1; 
 ; 3 x 2500 x 4 cts/rev / (360 deg / rev) 
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Motion program 
CLOSE 
OPEN PROG 12 CLEAR 
I193=$072B ; Time base source address is triggered 
DWELL0 ; time-base conversion in table (2nd line) 
M199=$90 ; Freeze the time-base (line before should be a 
DWELL) 
LINEAR ; Linear move mode 
INC ; Incremental move specification 
TA10  ; 36 degrees of master is 10 msec 
TS0 ; No S-curve 
DELAY12.5 ; 45 degrees of master is 12.5 msec 
TM50 ; 36+144 deg of master is 50 msec 
A360 ; One full revolution of slave axis 
CLOSE 

PLC Program 
CLOSE  
OPEN PLC 10 CLEAR 
IF (M199=$90) ; Has time-base been frozen? 
  M199=$B0 ; Then arm for trigger 
ENDIF  
CLOSE 

Synchronizing PMAC to Other PMACs 
When multiple PMACs are used together, inter-card synchronization is maintained by passing the servo 
clock signal from the first card to the others.  With careful writing of programs, this permits complete 
coordination of axes on different cards. 

PMAC provides the capability for putting multiple cards together in a single application.  To get the cards 
working together properly in a coordinated fashion, several factors must be considered: 

• Host communications addressing 
• Clock timing 
• Motion program timing 

The host communications addressing is covered in the previous Talking to PMAC section and the 
following Writing a Host Communications Program section.  The timing (synchronization) issues are 
covered immediately below. 

Clock Timing 
PMAC cards use a crystal clock oscillator (the master clock) as their fundamental time measuring device.  
Each PMAC has its own crystal oscillator.  Although these crystals are made to a very tight tolerance (50 
ppm accuracy standard; 10 ppm with Option 8) they are not exactly the same from card to card.  This can 
cause cards to lose synchronicity with each other over long move sequences if they are each using their 
own master clock.  Generally, this will be noticeable only if a continuous move sequence lasts more than 
10 minutes.  For example, in the worst case, with 100 ppm difference between two cards, at the end of a 
10-minute continuous sequence, the cards will be off by 60 msec. 
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Sharing Clock Signals 
The solution to this problem is to have all the cards share a common clock signal.  With PMAC, this is 
done over spare lines on the serial connector.  Card @0 outputs its clock signals; all other cards take the 
clock signals as inputs.  What are actually being shared are the phase clock and servo clock signals, which 
are divided down from the master clock as determined by the settings of jumpers E29-E33 and E3-E6.  
When sharing clock signals, only the settings of these jumpers on card @0 matter.  The I10 servo period 
parameter on every board in the chain should match the jumper settings on card @0. 

When multiple cards are communicating on the same serial port, they must share a common clock signal.  
This is because the same jumpers or switches that control the software addressing (E40-E43, or SW1-1 - 
SW1-4) also control whether the clock signal is input or output, so only one card in the chain can use its 
own clock signals; all others must receive theirs through the serial port connector. 

When multiple cards are communicating at separate hardware addresses on a common bus, or are 
operating standalone, it is optional whether they share the same clock signals.  To have them share a 
common clock signal, use the jumpers or switches to set up one card as @0, and the rest as higher 
numbered cards, and tie together the clock signals on the serial ports of all cards.  It may be easiest to tie 
all of the lines of the serial port together from card to card.  These jumper settings will not affect bus 
communications protocol in any way. 

If not sharing clock signals on multiple cards in a bus application, every card must be set up as @0. 

Connections 
Clock signals can be shared simply by tying identical pins on the PMACs together.   Accessory 3D or 3L 
cables with extra PMAC connectors (one Accessory 3E for each extra PMAC) can be used to share the 
clock signals in either bus or serial communications applications (and of course, for actual serial 
communications).  In a standalone or bus-communications application, there is no need for a host drop on 
the cable.  As is the case for the communications lines, you cannot tie the clock lines from the RS-422 
port of a PMAC-PC to the RS-232 port of a PMAC-Lite.  With the RS-422 option on the PMAC-Lite 
(Opt. 9L), connection to a PMAC-PC is possible, but the connector pinouts are different. 

If no serial communication is being used, but the serial data lines are connected along with the clock 
signals, it may be desirable to deactivate the serial port to prevent noise on the lines from creating input 
command characters to PMAC.  On PMAC-PC, PMAC-Lite, and PMAC-VME, this is done by making 
jumpers E44-E47 all ON; on PMAC-STD, by making DIP switches SW1-5 to SW1-8 all OFF. 

External Time Base 
If synchronicity is desired in an application where axes on several cards are tied to an external frequency 
time base, the same frequency signal must be brought into encoder counters on all cards.  If it is not also 
required to have complete synchronicity when on an internal time base, there is no need to tie the PMAC 
clock signals together, because the external frequency will effectively provide the common clock. 

Motion Program Timing 
Whether or not cards share a common clock signal, the synchronization of moves between multiple cards 
is only as good as the time specification in the motion programs in each card.  If one card is told to do a 3-
second long move, and another to do a 4-second long move, and they are started at the same time, they 
will obviously not finish together.  Therefore, it is imperative that motion programs on several cards that 
are intended to run together must be written very carefully so that they take the same amount of time for 
moves. 
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Initial Calculation Delay 
After receipt of a Run or Step command, a PMAC requires some initial calculation time before it can start 
the first move, typically a few milliseconds.  If several PMACs are told to start a program simultaneously, 
the cards will in general not take the same amount of time to calculate their first move.  If each card 
started its first move immediately on finishing the calculations, there would be a loss of synchronicity 
between cards.  PMAC parameter I11 (Motion Program Calculation Delay) exists to prevent this problem.  
It determines the number of milliseconds between the receipt of the Run or Step command, and the start 
of the first move.  I11 should be set to the same value on all cards for which synchronicity is desired; the 
default value of 10 (=10 msec delay) can be used in virtually all applications.  (If I11 is set to 0, the first 
move starts immediately after calculations are finished.  Typically this is works in single-card 
applications, but not in multi-card applications.)  

Time-Specification of Moves 
In general, moves in these programs should be specified by move time (TM, TA, and TS), and not by 
feedrate (F).  The time for a feedrate-specified move is calculated as the vector distance of all feedrate 
axes (FRAX) divided by the feedrate.  It is difficult to ensure that such moves on separate cards will take 
the same amount of time. 

DWELL is a non-synchronous move and should not be used when writing programs for multi-card 
applications.  Use the DELAY command to maintain program synchronicity.   

No-Drift Conditions 
If motion programs are written carefully, using time-specified moves, and the cards share common clock 
signals, they can run indefinitely with no drift between the cards.  There can be an initial offset between 
the cards of up to a few msec as to when they start their motion programs, even with simultaneous 
commands, but this offset will not increase with properly written motion programs and shared clock 
signals.  The following section explains how to minimize (and usually eliminate) this offset. 

Minimizing Initial Offset 
Usually PMAC cards told to simultaneously start a program will do so on the same servo cycle providing 
that no PLC programs are enabled.  Programs that do not start on the same servo cycle will start at the 
next real time interrupt.  This will be ((I8 + 1) * servo cycle length) µs later.  If PLC programs are 
enabled, the starting offset between cards could be as much as the amount of time the longest PLC 
requires to run and be translated.  A good method for eliminating an initial execution offset is as follows: 
• Initialize all program counters on all PMAC cards.  For the case of the same program with the same 

name on each card, enter @@B1<CR>.  For a more complicated case, enter @0B1@1&3B2<CR>. 
• Disable all PLC programs using <CTRL-D.  This will give the fastest possible response to a 

command. 
• Set I8 to 0, which forces a real time interrupt every servo cycle.  If not running a PLC 0, leave this at 

zero permanently. 
• Begin the programs using R<CR> if @@ has been issued as in the simple case or use <CTRL-R> 

which is the global run command. 
• To run a PLC 0, set I8 back to its original value (usually 2).  Leaving I8 at 0 will probably cause PLC 

0 to starve the background tasks for processor time, causing loss of communications or even a 
watchdog timer failure. 

• Enable the PLC programs required.  Have the first line of each motion program enable the PLC 
programs for its respective PMAC card.  For example: 
OPEN PROG 1 CLEAR 
ENA PLC 1..31 
TM 1000 
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Position-Capture Functions 
The position-capture function latches the current encoder position at the time of an external event into a 
special register.  It is executed totally in hardware, without the need for software intervention (although it 
is set up, and later serviced, in software).  This means that the only delays in the capture are the hardware 
gate delays (negligible in any mechanical system), so this provides an incredibly accurate capture 
function. 

Setting the Trigger Condition 
The position capture register can be used both automatically, as in homing routines where the firmware 
handles the register directly, and manually, where the user program must handle the register information.  
Regardless of the mode, the event that causes the position capture is determined by Encoder I-variables 2 
and 3 (I902 and I903 for Encoder 1).  Encoder I-Variable 2 defines what combination of encoder third-
channel transition and encoder flag transition triggers the capture (it also allows software trigger).  If it 
says to use a flag, Encoder I-variable 3 determines which flag (almost always set to zero to specify the 
home flag.) 

Using for Homing 
When using this feature for homing a motor, the motor flag address I-variable (Ix25 for motor x) must 
point to the proper set of flags (this has to be done to address the limit flags properly).  For instance, the 
default value of I125 is 49152 ($C000), pointing to the first set of flags.  Then Encoder/Flag I-variable 2 
(e.g. I902) and Encoder/Flag I-variable 3 (e.g. I903) define the transition within this encoder and flags to 
cause the position capture.  Once these have been set up properly, the homing function will use the 
position-capture feature automatically. 

Using in User Program 
If using the position-capture function in the own program, these two I-variables still control the capture 
event.  Access the captured position through a full word M-variable (M103 is the suggested M-variable 
for the Encoder 1 capture register: M103->X:$C003,0,24,S).  Use the position-captured flag bit (bit 
17 of the control/status register).  For example:  M117->X:$C000,17,1.  This bit goes true when the 
trigger condition has gone true; it goes false when the capture register is read (when M103 is used in an 
expression).  As long as the bit is true, the capture function is disabled; read the capture register to re-
enable the capture function.  The example program MOVTRIG.PMC shows how this function can be 
used for precision registration. 

Offset from Motor Position 
Encoder position is referenced to the position at the most recent power-on or reset, regardless of any 
homing moves or offset commands done since then.  To relate this encoder position to motor position, 
one must know the offset between encoder zero and the homing-zero positions.  Fortunately, this is 
simply the position captured during the homing move, which PMAC stores for future use in registers 
Y:$0815 (#1), Y:$08D5 (#2), etc.  

Note: 

The position-capture feature gets encoder position, rather than motor or axis 
position.   
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Position-Compare Functions 
The position-compare feature is essentially the opposite of the position-capture function.  Instead of 
storing the position of the counter when an external signal changes, it changes an external signal when the 
counter reaches a certain position.  In this way, events can be triggered to happen on the actual position of 
your system.  Because the triggering is a pure hardware function (although setup is software), it is very 
fast and accurate.  Use the signal to trigger an action in the host, in the plant, or in PMAC itself. 
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Figure 53 PMAC-PC/VME Custom Gate Array (DSPGATE) Encoder Functions 

Required M-Variables 
To utilize this feature, access the position-compare register itself, and several status and control bits.  For 
Encoder 1, declare: 
M103->X:$C003,0,24,S  ; 24-bit position compare register 
M111->X:$C000,11,1     ; Compare flag latch control bit 
M112->X:$C000,12,1     ; Compare output-enable bit 
M113->X:$C000,13,1     ; Compare output invert control bit 
M116->X:$C000,16,1     ; Compare-equals flag 

Preloading the Compare Position 
To preload a compare position, simply assign a value to M103, such as M103=1250.  This value can be 
between -8,388,608 and +8,388,607. To obtain the position-capture register, read from the same address. 
The command can be given from a PMAC motion program, a PMAC PLC program, or from the host.  
This is the encoder position; to reference it to motor zero position, the homing offset must be know.  
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Compare Control Bits 
There are three control bits to set up the format of the equals signals.  The flag-latch control bit (M111 in 
our example) controls whether the compare-equal signal is transparent (true only when the positions are 
actually equal) or latched (true until actively reset).  The signal is transparent if this control bit is zero, 
and latched if the control bit is one.  To clear a latched flag, take the control bit to zero, then back to one.   

This compare-equal signal is always copied into the compare-equal flag (M116 in our example) that is 
available for the PMAC internal use.  If using this flag internally, make sure that the signal is latched 
(M111=1), or it will be missed.  For interrupting the host (edge-triggered), make the signal transparent. 

The output-enable bit (M112 here) determines whether the compare-equal flag will be output on the EQU 
line (1 enables).  This must be set to use the signal either to interrupt the host or to trigger an external 
event directly.  The output-invert bit (M113 here) determines whether the EQUn output is high true or 
low true (1 inverts to low true).  For host-interrupt purposes, set this high true. 

Interrupting the Host on a Compare-Equals 
If using this EQUn line to interrupt the host, jumper the line to PMAC-PC's 8259 Programmable Interrupt 
Controller (PIC).  The jumpers for this purpose are in the range E54 to E65 along the bottom edge of the 
PMAC-PC board.  The output from this PIC must be jumpered to a PC interrupt line using one of the 
jumpers E76-E84.  Refer to the jumper tables and the Using the PMAC-PC to Interrupt the Host 
Computer section. 

Directly Triggering External Action 
To use the EQU lines to trigger external action from a PMAC-PC, put a connector on the E-points (E53-
E65) that would jumper these signals to the interrupt controller (an IDC 26-pin connector can work 
nicely).  There is no other connector to bring these signals out.  These signals must be buffered; the TTL 
drivers for these outputs on PMAC-PC are very weak. 

On the PMAC-Lite, PMAC-VME and PMAC-STD, there is a JEQU connector to bring out the Compare-
Equals outputs.  These output are open-collector (sinking) outputs, rated to 24V and 100 mA.  The 
existing socketed driver IC may be replaced with a sourcing driver IC (UDN2981A). 

Example 
The program COMPPULS.PMC in the examples section shows how to use this feature to generate a very 
rapid series of equals pulses on position intervals.  As soon as PMAC detects that the previous compare 
position has been reached, it clears the flag, loads the next compare position, and calculates the position 
after that. 

Offset from Motor Position 
Encoder position is referenced to the position at the most recent power-on or reset, regardless of any 
homing moves or offset commands done since then.  To relate this encoder position to motor position, 
one must know the offset between encoder zero and the homing-zero positions.    Fortunately, this is 
simply the position captured during the homing move, which PMAC stores for future use — in registers 
Y:$0815 (#1, Y:$08D5 (#2), etc.   

Note 

The position-compare feature uses encoder position, rather than motor or axis 
position. 
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Synchronous M-Variable Assignment 
Synchronous M-variable assignment statements allow outputs to be set and cleared synchronously with 
the start of the next commanded move in the motion program.  The output is synchronous with the 
commanded position, not necessarily the actual position, which can be different due to following error.  
These statements are discussed in detail in the Computational Features section of this manual. 
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WRITING A PLC PROGRAM 
PLC Programs 
In addition to the motion programs, which operate sequentially and synchronously in time (any move 
command takes a specified amount to execute before succeeding program lines are executed) PMAC has 
64 PLC programs that operate asynchronously and with rapid repetition (32 compiled PLC programs as 
well as 32 uncompiled PLC programs).  They are called PLC programs because they perform many of the 
same functions as hardware programmable logic controllers. PLC programs have most of the same logical 
constructs as the motion programs, but no move-type statements.   

Most compiled PLC programs are very similar, if not identical to uncompiled PLC programs.  In fact, 
before compiling a PLC program, it should be tested and debugged as an uncompiled PLC.  The 
differences between the two types of PLC programs are in the area of buffer control, L-variables, some 
command syntax, and the use of the compiler.  Because of these similarities much of the section about 
uncompiled PLC programs also applies to compiled PLC programs.  The information specifically 
concerning compiled PLC programs is contained in the section entitled Compiled PLC Programs. 

When To Use 
PLC programs are designed for actions that are asynchronous to the motion.  If the action you want is 
synchronous to the programmed motion (e.g. once per move), use a motion program instead to create the 
action. 

Common Uses 
PLC programs are particularly useful for monitoring analog and digital inputs, setting outputs, sending 
messages, and monitoring motion parameters, issuing commands as if from a host, changing gains, and 
starting and stopping moves.  By their complete access to PMAC variables and I/O and their 
asynchronous nature, they become powerful adjuncts to the motion control programs. 

32 PLC Programs 
PLC programs are numbered 0 through 31 for both the compiled and uncompiled PLCs.  This means that 
both a compiled PLC n and an uncompiled PLC n can be stored in PMAC.  PLC program 0 is a special 
fast program that operates at the end of the servo interrupt cycle with a frequency specified by variable I8 
(every I8+1 servo cycles).  This program is meant for a few time-critical tasks, and it should be kept 
small, because its rapid repetition can steal time from other tasks. 

Caution 

A PLC 0 that is too large can cause unpredictable behavior and can even trip the 
PMAC Watchdog Timer by starving background tasks of time to execute. 

PLC programs 1 through 31 operate continually in background as time allows, effectively in an infinite 
loop.  They get interrupted by the higher priority tasks of motor phasing, servo loop closure, more 
planning, and PLC 0. 
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Entering a PLC Program 
The PLC program statements are entered as buffered command lines into PMAC.  In preparation, it is a 
good idea to make sure no other buffers have been left open by issuing a CLOSE command.  It is also 
good practice to make sure that memory has not been tied up in data gathering or program trace buffers, 
by issuing DELETE GATHER and DELETE TRACE commands 

Opening the Buffer 
For each PLC program, the next step is to open the buffer for entry with the OPEN PLC n statement, 
where n is the buffer number.  Next, if there is anything currently in the buffer that should not be kept, it 
should be emptied with the CLEAR statement (PLC buffers may not be edited on the PMAC itself; they 
must be cleared and re-entered).  If the buffer is not cleared, new statements will be added onto the end of 
the buffer.   

Downloading the Program 
Typically in program development, the editing will be done in a host-based text editor, and the old buffer 
is cleared every time the new version is downloaded to the card.  When finished, close the buffer with the 
CLOSE command.  Opening a PLC program buffer disables that program automatically.  After it is 
closed, it remains disabled, but it can be re-enabled again with the ENABLE PLC n command, where n 
is the buffer number (0—31).  I5 must also be set properly for a PLC program to operate. 

The general form for this technique is: 
CLOSE 
DELETE GATHER 
DELETE TRACE 
OPEN PLC n 
CLEAR 
{PLC statements} 
CLOSE 
ENABLE PLC n 

Note 

Because all PLC programs in the PMAC memory are enabled at power-on/reset it 
is good practice to have I5 saved as 0 in the PMAC memory when developing PLC 
programs.  This will allow you to reset PMAC and have no PLCs running (an 
enabled PLC only runs if I5 is set properly) and more easily recover from a PLC 
programming error. 

Closing the Buffer 
At the closing, PMAC checks to make sure all IF branches and While loops have been terminated 
properly.  If not, it reports an error, and the buffer is inoperable.  Correct the PLC program in the host and 
re-enter it (clearing the erroneous block in the process, of course).  This process is repeated for all of the 
PLC buffers in use. 

Erasing the Program 
To erase an uncompiled PLC program, open the buffer, clear the contents, then close the buffer again.  
This can be done with three commands on one line, as in: 
OPEN PLC 5 CLEAR CLOSE 
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Example 
A quick example of a PLC block entry is shown below: 
OPEN PLC 2 
CLEAR 
IF (M11=1) 
 I130=10000 
ELSE   
 I130=8000 
ENDIF 
CLOSE 
ENABLE PLC 2 

PLC Program Structure 
The important thing to remember in writing a PLC program is that each PLC program is effectively in an 
infinite loop; it will execute over and over again until told to stop.  (These are called PLC because of the 
similarity in how they operate to hardware Programmable Logic Controllers, the repeated scanning 
through a sequence of operations and potential operations.) 

Calculation Statements 
Much of the action taken by a PLC is done through variable value assignment statements: 
{variable}={expression}.  The variables can be I, P, Q, or M types, and the action thus taken 
can affect many things inside and outside the card. 

As shown in the Getting Started section of the manual, perhaps the simplest PLC program consists of one 
line: 
P1 =P1 + 1 

Every time the PLC executes, usually hundreds of times per second, P1 will increment by one. Of course, 
these statements can get a lot more involved.  The statement: 

P2 = M162/I108 32 10000)*COS(M262/(I208 32 100)) 

could be converting radial (M162) and angular (M262) positions into horizontal position data, scaling at 
the same time.  Because it updates this very frequently, whoever needs access to this information (e.g., 
host computer, operator, motion program) can be assured of having current data. 

Conditional Statements 
Most action in a PLC program is conditional, dependent on the state of PMAC variables, such as inputs, 

outputs, positions, counters, etc. The action can be level-triggered or edge-triggered; both can be 
done, but the techniques are different. 

Level-Triggered Conditions. 
A branch controlled by a level- triggered condition is easier to implement.  Taking the incrementing 
variable example and making the counting dependent on an input assigned to variable M11: 
IF (M11=1) 
 P1=P1+1 
ENDIF 

As long as the input is true, P1 will increment several hundred times per second.  When the input goes 
false, P1 will stop incrementing.  
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Edge-Triggered Conditions 
To increment P1 once for each time M11 goes true (triggering on the rising edge of M11 sometimes 
called a one-shot or latched).  To do this, there must be need a compound condition to trigger the action, 
then as part of the action, set one of the conditions false, so the action will not occur on the next PLC 
scan.  The easiest way to do this is using a shadow variable, which will follow the input variable value.  
Action is only taken when the shadow variable does not match the input variable. The code could 
become: 
IF (M11=1) 
 IF (P11=0) 
  P1=P1+1 
  P11=1 
 ENDIF 
ELSE 
 P11=0 
ENDIF 

Make sure that P11 can follow M11 both up and down.  Set P11 to 0 in a level-triggered mode. This could 
have been done this edge-triggered as well, but it does not matter as far as the final outcome of the routine 
is concerned. It is about even in calculation time, and it saves program lines. 

Any SEND, COMMAND, or DISPLAY action statement should be done only on an edge-triggered 
condition, because the PLC can cycle faster than these operations can process their information, and the 
communications channels can get overwhelmed if these statements get executed on consecutive scans 
through the PLC.  More examples of how to program using these statements can be found in chapter 9. 
IF (M11=1) ; input is ON 
   IF (P11=0) ; input was not ON last time 
      COMMAND"#1J+" ; JOG motor 
      P11=1 ; set latch 
   ENDIF 
ELSE 
   P11=0 ; reset latch 
ENDIF 

WHILE Loops 
Normally a PLC program executes all the way from beginning to end within a single scan.  The exception 
to this rule occurs if the program encounters a true WHILE condition.  In this case, the program will 
execute down to the ENDWHILE statement and exit this PLC.  After cycling through all of the other 
PLCs, it will re-enter this PLC at the WHILE condition statement, not at the beginning.  This process will 
repeat as long as the condition is true.   

When the WHILE condition goes false, the PLC program will skip past the ENDWHILE statement and 
proceed to execute the rest of the PLC program. 

To increment the counter as long as the input is true, and prevent execution of the rest of the PLC 
program, program: 
WHILE (M11=1) 
 P1=P1+1 
ENDWHILE 

This structure makes it easier to hold up PLC operation in one section of the program, so other branches 
in the same program do not have to have extra conditions and they do not execute when this condition is 
true.  Contrast this to using an IF condition (see above). 
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Some COMMAND action statements should be followed by a WHILE condition to ensure they have taken 
effect before proceeding with the rest of the PLC program.  This is true if a second COMMAND action 
statement that requires the first COMMAND action statement to finish will follow.  (Remember, COMMAND 
action statements are processed only during the communications section of the background cycle.)  To 
have an input stop any motion in a Coordinate System and start motion program 10.  The following PLC 
could be used. 
IF (M11=1) ; input is ON 
   IF (P11=0) ; input was not ON last time 
      P11=1 ; set latch 
      COMMAND"&1A" ; ABORT all motion 
      WHILE(M187=0) ; wait for motion to stop. 
      ENDW 
      COMMAND"&1B10R" ; start program 10 
   ENDIF 
ELSE 
   P11=0 ; reset latch 
ENDIF 

Note 

M187 is the Coordinate System In-Position bit as defined in Example program 1. 

Precise Timing 
Since PLCs 1 to 31 are the lowest computation priority on PMAC, the cycle time cannot be determined 
precisely.  To hold up an action for a fairly precise amount of time, use a WHILE loop, but instead of 
incrementing a variable, use an on-board timer.  PMAC has four 24-bit timers to write to, and count down 
once per servo cycle.  These timers are at registers X:$0700, Y:$0700, X:$0701, and Y:$0701.  Usually a 
signed M-variable is assigned to the timer; a value is written to it representing the desired time in servo 
cycles (multiply milliseconds by 8,388,608/I10); then the PLC waits until the M-variable is less than 0.  
With M70->X:$0700,24,S: 

M70=P1*8388608/I10 ; Set timer to 500 msec 
WHILE (M70>0) ; Loop until counts to zero 
ENDWHILE ; Exit PLC program here when true 

For more timers, probably the best technique to use is in memory address X:0.  This 24-bit register counts 
up once per servo cycle.  Store a starting value for this, then in each scan subtract the starting value from 
the current value and compare the difference to the amount of time to wait.  By subtracting into another 
24-bit register, handle rollover of X:0 gracefully. 

First, define the following M-variables with on-line commands: 
M0->X:$0,24 ; Servo counter register 
M85->X:$07F0,24 ; Free 24-bit register 
M86->X:$07F1,24 ; Free 24-bit register 

Then we write as part of our PLC program: 

M85=M0 ; Start of timer 
M86=M0-M85 ; Time elapsed so far 
WHILE (M86<P86) ; Less than specified time? 
M86=M0-M85 ; Time elapsed so far 
ENDWHILE ; Exit PLC program here when true 
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Compiled PLC Programs 
It is possible to compile PMAC PLC programs for faster execution.  The faster execution of the compiled 
PLCs comes from two factors: first, from the elimination of interpretation time, and second, from the 
capability of the compiled PLC programs to execute integer arithmetic.  Floating-point operations in 
compiled PLC programs run 2 to 3 times faster than in interpreted PLC programs; integer (including 
boolean) operations run 20 to 30 times faster in compiled form. 

Note 

The size of the compiled code mentioned here refers to the space that the actual 
compiled code will occupy in the PMAC memory.  It does not refer to the size of 
the compiler's output file on the PC's disk drive.   

PMAC does not perform the compilation of the PLC programs itself.  The compilation is done in a PC; 
the resulting machine code is then downloaded to PMAC.   

PMAC can store and execute up to 32 compiled PLC programs as well as 32 interpreted (uncompiled) 
PLC programs for a total of 64 PLC programs.  15K (15,360) 24-bit words of PMAC memory are 
reserved for compiled PLCs; or 14K (14,336) words if there is a user-written servo as well.  No other task 
may use this memory, and compiled PLCs may not use any other memory.   

A compiled PLC program is labeled PLCC n (PLC-Compiled #n) on PMAC.  This distinguishes it from 
an interpreted PLC, which is simply labeled PLC n.  There is no special relationship between the 
interpreted and compiled PLCs of the same number. 

Execution of Compiled PLCs 
Of the 32 compiled PLC programs (PLCC 0 to PLCC 31) only PLCC 0 operates in the foreground, 
triggered by the real-time interrupt (RTI).  PLCCs 1 to 31 operate as background tasks. 

At each real-time interrupt, PMAC checks to see whether several user tasks need to be done.  The real-
time interrupt occurs every (I8+1) servo cycles.  PMAC checks the tasks in the following order: 

• Motion program move planning: PMAC checks to see in each coordinate system whether it is time to 
calculate the next move in the program. 

• Interpreted PLC 0: PMAC checks to see if I5=1 or 3 and if PLC 0 is enabled.  If so, it executes one 
scan of PLC 0. 

• Compiled PLC 0: PMAC checks to see if I5=1 or 3 and if PLCC 0 is enabled.  If so, it executes one 
scan of PLCC 0. 

It is very important that the scan execution time of PLCC 0 and PLC 0 be kept less than one real-time 
interrupt period.  Otherwise, their repeated execution will starve the background for time, and probably 
trip the watchdog timer. 

In background, PMAC executes one scan of a single background interpreted PLC program uninterrupted 
by any other background task (although higher-priority tasks will interrupt).  In between each scan of 
each individual background interpreted PLC program, PMAC will execute one scan of all active 
background compiled PLCs.  This means that the background compiled  PLCs execute at a higher scan 
rate than the background interpreted PLCs.  For example, if there are seven active background interpreted 
PLCs, each background compiled PLC will execute seven scans for each scan of a background interpreted 
PLC. 



PMAC User Manual 

Writing a PLC Program 16-7 

Preparing Compiled PLCs 
Preparation of compiled PLCs is a multi-step process.  The basic steps are as follows: 

• Write and debug the PLC programs in interpreted form. 
• Change all references to PLCs to be compiled from PLC to PLCC. 
• For integer arithmetic, define L-variables and substitute these for the old variable names in the 

programs. 
• Combine all of the PLC programs to be compiled into one file on the PC, substituting true PMAC 

code for the macro names. 
• With the Compile on Download feature of the Executive program active, download the files to 

PMAC using the Download function. 
• Activate the compiled PLCs.  If operation is not correct, return to step 1 or 2. 

Each of the above steps is explained in detail below. 

Preliminary Debugging 
It is advisable to do most of the debugging of PLC program code in interpreted form.  The ease of 
repeated editing, downloading, and execution makes multiple trials fast and easy, using the PMAC 
Executive program and the PMAC.  Once debugging is substantially complete in interpreted form, it is 
quite easy to change to compiled form. 

Changing PLC References 
All references to the PLC programs that are to be compiled must be changed from PLC to PLCC.  Each 
PLC program that is to be compiled must be headed with an OPEN PLCC n command.  This is the 
signal to the compiler that what follows (until the CLOSE command) is to be compiled.  Any ENABLE 
PLC and DISABLE PLC commands that refer to PLC programs to be compiled must be changed to 
ENABLE PLCC and DISABLE PLCC commands, whether or not these commands themselves are in 
PLC programs to be compiled. 

Executing Integer Arithmetic 
The compiled PLCs have the capability to perform arithmetic and logical operations in 24-bit signed 
integer form.  By contrast, all arithmetic and logical operations in uncompiled PLC programs are 
performed in 48-bit floating-point form, even if acting on integer variables.  The short integer math 
operations execute at least 10 times faster than the floating-point operations.  Combined with the two to 
three times improvement from compilation, this provides execution 20 to 30 times faster than uncompiled 
floating-point operations. 

A compiled PLC program can have some statements that are executed using integer arithmetic and other 
statements that are executed using floating-point arithmetic.  However, a given statement within the 
compiled PLC is executed either entirely with integer arithmetic or entirely with floating-point arithmetic 
(even if it is working with integer registers). 

Using L-Variables 
The use of L-variables in a PLC program statement is the sign to the compiler that the statement is to be 
executed using integer operations instead of floating-point operations.  L-variables can be used in two 
types of statements in compiled PLCs: variable value assignment statements, and conditional statements 
(IF, WHILE, AND, OR). 
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Creating L-Variables 
To implement integer arithmetic in a compiled PLC, define any L-variables to be used and substitute 
them in the programs for the variables that were used in the interpreted form (usually M-variables).  The 
compiler will interpret statements containing only L-variables (properly defined) and integer constants as 
operations to be executed using integer arithmetic in compiled PLCs.   

L-variables are defined like X- or Y-format M-variables, but they exist only for the compiler.  PMAC 
does not recognize L-variables or L-variable definitions, and PMAC will reject any uncompiled command 
containing an L-variable that is sent to it.  All L-variable definitions must precede the first PLC program 
to be compiled in the file.   

Legal L-variable names for the compiler contain the letter L followed by an integer in the range 0 to 1023, 
for a total of 1024 possible L-variables (L0 to L1023). 

Put all of the L-variable definition statements in a separate file that will be combined with the main PLC 
file using the #include statement (e.g. #include lvardef.pmc).  This single line can be 
commented out with a semicolon while debugging the programs in interpreted mode.  Remember that if 
using a standalone compiler, this definition file must be combined with the main file into a single file 
before the compiler can run.  A compiler running as part of the CNC Executive or the PMAC Executive 
will combine these automatically, if using a single main load file, which includes all of the other files. 

For variables referencing fixed locations in the PMAC memory and I/O space, the L-variables will simply 
replace M-variables, and the L-variable definition will be made exactly like the M-variable definitions.  It 
is acceptable to retain the M-variable definition as well.  Retain the M-variable definitions for debugging 
purposes because PMAC will not accept a query command for the value or definition of an L-variable. 

For example, Machine Output 1 and Machine Input 1 on the JOPTO port are typically referenced by the 
following definitions in uncompiled programs: 
M1->Y:$FFC2,8 ; Machine Output 1 
M11->Y:$FFC2,0 ; Machine Input 1 

For the compiled PLC programs, you could create equivalent M-variable definitions: 
L1->Y:$FFC2,8 ; Machine Output 1 
L11->Y:$FFC2,0 ; Machine Input 1 

A small routine in a compiled PLC to make Machine Output 1 follow Machine Input 1 would be: 
IF (L11=1) 
 L1=1 
ELSE  
 L1=0 
ENDIF  

It is acceptable to access a register in one program statement with an L-variable, and then access the same 
register, even the same part of the register, in another program statement with an integer M-variable or I-
variable.  Mixing L-variable access and P- or Q-variable access to a P- or Q-variable register will yield 
nonsensical results, because the P- and Q-variable access always treats the register as a floating-point 
number. 

For general-purpose integer variables, the L-variables will probably replace what was previously done 
with P-variables in the program.  Since L-variables must be defined to a specific address, it is important to 
find open areas of PMAC memory to hold these variables.  To make this easier, declare a User buffer on 
PMAC with the DEFINE UBUFFER {size} command, where {size} represents the number of 48-
bit words of PMAC memory to be reserved for this buffer.  The buffer starts at address $9FFF and 
continues back toward the start of memory for the specified number of words.  For example, the 
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command DEFINE UBUFFER 256 reserves addresses $9F00 to $9FFF, both X and Y registers, for user 
use, including L-variables. 

A user buffer cannot be created if there is already any buffer in PMAC that was created with a DEFINE 
command (rotary program, leadscrew comp, etc.).  It is easiest to create the user buffer immediately after 
re-initializing the card with a $$$*** command. 

Debug these programs using integer M-variables assigned to user buffer registers as the general-purpose 
variables, instead of P-variables.  This will make the changeover to compiled integer form easier. 

If there are just a few general-purpose L-variables, use the open memory areas $0770 to $077F, and 
$07F0 to $07FF (both X and Y registers.) 

Remember that because the L-variable definitions are used only at the time of compilation, it is not 
possible to use the array indexing techniques with L-variables that can be performed using M-variables by 
changing the definitions at run time. 

Variable Value Assignment Statements 
Variable value assignment statements are used by PMAC to write to any register, whether an output, a 
general-purpose variable in memory, a memory register used for a specific purpose, such as a gain, or a 
hardware register, such as a flag-control register.  Many of these statements can be executed using integer 
arithmetic. 

Valid Values 
In a given variable value assignment statement ({variable}={expression}), L-variables cannot 
be combined with any other type of variable; that is, if there is any L-variable in the statement, all 
variables in the statement, on both sides of the equals sign, must be L-variables.  Any constants in the 
statement must be integers in the range -8,388,608 to 8,388,607 (-2

23
 to 2

23
-1). 

Any variable-value assignment statement in a compiled PLC containing an L-variable that also contains 
another type of variable, a non-integer constant, or an integer constant outside the range -2

23
 to 2

23
-1 will 

be rejected by the compiler.  The compiler will report the error and line number. 

Valid Operators 
All of the mathematical operators (+, -, *, /, %) and bit-by-bit boolean operators (&, |, ^) that can be 
used in floating-point operations in uncompiled PMAC programs can also be used in integer operations in 
compiled PLCs.  The priorities of these operations are the same as for the floating-point operations. 

Integer Division 
The result of the integer divide is rounded toward the nearest integer, unlike the integer divide in the PCs 
Intel 80x86, in which it is truncated toward zero.  In the case where the fraction is exactly 0.5, it will 
round to the next more positive integer (e.g. -7.5 to -7, and 7.5 to 8 ).  In PMAC floating-point operations, 
all intermediate values have floating-point resolution and range; if the final value is stored in an integer 
register as an I- or M-variable; the rounding rules above apply for this final value. 

The following table illustrates the effect of integer division round-off: 

Integer Division Round-Off Effect 
Platform Statement Resulting value 

PC x=10*2/3 6 
PMAC L1=10*2/3 7 
PMAC M1=10*2/3 7 

PC x=10*(2/3) 0 
PMAC L1=10*(2/3) 10 
PMAC M1=10*(2/3) 7 
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Bit Inversion 
The logical NOT operation to invert bits can be executed by operating on the quantity with the ^ 
exclusive-or operator and a constant value that contains all bits = 1.  A single bit L-variable can be 
toggled with ^ 1 (for example, L1=L1^1).  All bits of a 24-bit L-variable can be changed with ^$FFFFFF 
(for example L356=L355^$FFFFFF). 

No Functions 
It is not acceptable to use any functions in integer variable value assignment statements (e.g. 
L1=SIN(L2)). 

Intermediate Values 
All intermediate values of these integer calculations are signed 24-bit values.  Make sure that no 
intermediate value in the calculations goes outside of this range.  For example, the statement: 
L500=-1000000 20000000/4000000 

would not execute properly because the product of the first two values is more than 24 bits in length. 

The resulting value of the calculation in a variable value assignment statement must be written to an L-
variable.  This variable may be less than 24 bits wide.  For an L-variable N bits in length, only the low N 
bits of the calculated value are written to the register; the rest of the bits are lost.  These N bits do not 
have to be lowest bits in the register.   

For example, with the definition L102->Y:$C003,8,16,S (DAC1 register), in the high 16 bits of a 
24-bit word, the statement L102=1000 shifts the value automatically to start at bit 8 in Y:$C003.   

Examples 
Examples of legal integer statements: 
L100=1    
L0=L1-L2*L3+(L4/1024)  
L5=L5%1000    
L6=L1^$FF    

Examples of illegal integer statements: 
L10=P10    
P10=L10    
L11=L11+P11   
L13=16777216/L12   
L253=L14*ATAN(L16)  

Conditional Statements 
In a conditional statement, any simple condition ({expression} {comparator} 
{expression}) that contains only L-variables and integer constants in the range -2

23
 to 2

23
-1 will be 

evaluated using the faster integer arithmetic.  Any simple condition in a compiled PLC containing an L-
variable that also contains another type of variable, a non-integer constant, or an integer constant outside 
the range -2

23
 to 2

23
-1 will be rejected by the compiler.  The compiler will report the error and line 

number. 

The integer simple condition always compares two 24-bit signed quantities against each other, and all 
intermediate values in evaluating the conditions are held as 24-bit signed quantities as well, so all values 
must be kept in the range -2

23
 to 2

23
-1 for proper evaluation. 
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All of the mathematical operations permitted in integer variable value assignment statements are also 
permitted in integer condition statements.  All of the same rules and speed/memory benchmarks (see 
below) apply. 

Compound conditions, which are comprised of simple conditions separated by AND or OR logical 
operators, may contain both simple conditions evaluated with integer arithmetic and simple conditions 
evaluated with floating-point arithmetic. 

All of the comparators that are permitted in PMAC floating-point programs, except the ~ (approximately 
equal to) and !~ (not approximately equal to) comparators, are also permitted in integer-only conditions 
in compiled PLCs.  These valid comparators are =, !=, >, !>, <, and !<. 

Examples 
Examples of legal condition statements: 
IF (L50 = 1)    
WHILE (L75 < L76)   
IF (L1&L2 | (L4+L5) > 0 AND P1 = Q2 OR L6 != 0)  
OR (L3 & L5 = $11 AND P1 = P2 OR L1 = 0)   

Examples of illegal condition statements: 
IF (L50 = P1)    
WHILE (L75 < 10000000)  
IF (L1 + P2 = 0)    

Optimization for Speed and Memory 
L-Variables that are 24-bit signed values are the fastest to read and write.  Unsigned 1- to 20-bit variables 
without offset are next fastest, and signed 1- to 20-bit variables and those having an offset from bit 0 are 
the slowest.  The slower the operation, the more PLC program memory is used.  However, 24-bit L-
variables will use more data memory than the smaller-width ones.  Because speed is more of a concern 
than data memory in most compiled PLC applications, usually all L-variables that do not have to be short 
to point to a particular portion of a word (such as all the general-purpose L-variables in the user buffer) 
are 24 bits wide, even if they do not require the full range. 

A read or write operation on a signed 24-bit L-variable takes three DSP instruction cycles to execute and 
two program memory locations to store. 

A read operation from a less-than-24-bit (1- to 20-bit) signed L-variable takes from six to eight DSP 
instruction cycles and from five to seven program memory locations.  A read operation from a less-than-
24-bit (1- to 20-bit) unsigned L-variable takes from 7 to 9 DSP instruction cycles and from six to eight 
program memory locations.   

A write operation to a less-than-24-bit (1- to 20-bit) signed or unsigned L-variable takes 12 to 14 
instruction cycles and 10 to 12 program memory locations. 

• The &, ^, |, +, -, * operators take one or two DSP instruction cycles. 
• The divide ( / ) operator takes nominally 82 DSP instruction cycles. 
• The modulo ( % ) operator takes nominally 76 DSP instruction cycles. 
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Integrating PLC Files 
Before using the standalone compiler (PLCC.EXE), all of the PLC programs that are to be compiled must 
be combined into one file.  The CNC Executive program, and the new general PMAC Executive program 
V3.x, can use multiple files if the main file references all of the other files to be used with #include 
commands. 

The standalone compiler will only operate on one file, assuming that it contains all of the PLC programs 
to be compiled.  It is acceptable to leave PLC programs that will not be compiled, and other commands, in 
the file.  The compiler will simply pass these through unchanged. 

The standalone compiler cannot work with the #define macros and #include files that the PMAC 
Executive program editor and download routines use.  The substitutions into true PMAC code must be 
performed before the compiler starts.  The program PREPROC.EXE can be used to perform these 
substitutions and integrate multiple files into a single file. 

The preprocessor program PREPROC.EXE, or the compiler program PLCC.EXE can be obtained from 
Delta Tau’s bulletin board system.  

To execute the pre-processor program that performs the #define macro substitutions and integrates the 
#include files, type PREPROC -F{filename} at the DOS prompt, where {filename} is the full 
name of the main file, including the extension.  This program creates an output file with the same name as 
the input file, but with a .SRC output file.  It also creates a .MAP file of the same name that contains the 
cross-references between macro names and PMAC code. 

Link Address File 
In the same subdirectory that contains the cross-compiler, there must be a file called LISTLINK.TXT, 
that the compiler will reference as it runs..  This file must contain the ASCII text returned by PMAC in 
response to a LIST LINK command.  This text contains the PMAC addresses of key subroutines to 
which the cross-compiler must link the compiled PLC code.  It is specific to a particular version of 
PMAC firmware.  Any change in PMAC firmware, even a sub-version change for a bug fix (e.g. from 
V1.15A to V1.15B) requires a new LISTLINK.TXT file, re-compilation of the PLCs, and re-downloading 
of the compiled code. 

Executing the Compiler 
The standalone compiler is executed by typing PLCC -F{filename} at the DOS prompt, where 
{filename} is the full name of the input file, including the extension.  The compiler will then execute 
either until successful completion, or until it finds an error. 

In the PMAC Executive programs, the compiler is integrated into the download routine as long as the 
Compile on Download option has been activated. 

If the compiler can compile the entire file successfully, it will create an output file containing the PMAC 
machine code in form that can be directly downloaded to PMAC.  This file has the same name as the 
input file, but with a .56K extension.  The following message displays on the screen: 
*** PMAC PLC Compiler V1.2 04/28/94 *** 
*** PLC compile complete, no errors *** 
*** Downloadable PLCC code in file MYPLCC.56K *** 
*** PLCC program memory use: 7343 of 15360 words *** 
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If the compiler finds an error, no output file is created.  The compiler stops on the first error that it finds.  
The following message displays on the screen: 
*** PMAC PLC Compiler V1.2 04/28/94 *** 
*** Compilation aborted due to error *** 
*** Compile error #: 35 *** 
*** PLC source file line: 27 *** 

Compiler Errors 
The compiler can report the following errors: 

Number Type of Error 
33 Unable to pack floating point number 
34 Unable to convert string to float number 
35 Illegal Command or Format in string 
36 Integer number out of range 
37 Unmatching parenthesis 
38 Illegal Else Cmd 
39 Illegal EndIf Cmd 
40 Illegal EndWhile Cmd 
41 PLCC Output File Error 
42 PLCC Input File Error 
43 Unclosed If or While Cmd 
44 PLCC 56k maximum memory exceeded 
45 PLC 56k conversion stack exceeded 
46 First pass of Tokens exceeded maximum 
47 Far heap allocate error 
48 String must be in quotes & < 255 char 
49 L-Variable address not defined 
50 Two L-Variables with same address definition or has 

already been defined 

Compiler Processing 
The compiler observes the following rules in interpreting the input file: 

• Comments — all characters from a semicolon (;) character to the end of a line — are ignored, and 
they are not passed on to the output file 

• The compiler recognizes and uses L-variable definitions, but does not pass them on to the output file. 

• All statements between OPEN PLCC n and CLOSE, except comments, are compiled into DSP 
machine code.  The CLEAR command is not required after OPEN PLCC n, because the act of 
downloading new compiled PLCCs erases the existing version automatically.  However, there is no 
need to remove the CLEAR command for the compiler. 

• For each compiled PLC n that is created, the compiler will add the commands OPEN PLC n 
CLEAR CLOSE to the output automatically.  When sent to PMAC, this erases the uncompiled PLC 
of this number automatically.  The reason this is done is to prevent uncompiled and compiled versions 
of the same PLC from trying to execute simultaneously.   
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To use a different uncompiled PLC of the same number as a compiled PLC, include it in the input file to 
the compiler after the text for the compiled PLC.  The compiler will pass it through to the output and it 
will be reloaded each time.  Otherwise, do a separate download of this PLC after each compile/download 
cycle.  All other commands are passed through the compiler to the output file unchanged. 

The compiler will tells how many words of PMAC memory the compiled code will occupy; it will note 
an error if the compiled code exceeds the maximum permitted 15360 words of PMAC memory.  If using 
a user-written servo in PMAC, ascertain that the compiled code does not exceed 14336 words. 

Downloading the Compiled Code to PMAC 
The single output file from the compiler can be downloaded to PMAC by any program or routine that can 
send files to PMAC, such as the PMAC Executive program’s Download file to PMAC menu selection.  In 
the CNC Executive program, the download occurs automatically after the compiling. 
The act of downloading any new compiled PLC programs deletes all of the existing compiled PLC 
programs in the PMAC active memory automatically.  No other commands need to be used to delete 
these. 
In PMACs with battery-backed memory, the compiled PLC programs are retained by the battery 
automatically through power-down cycles until they are explicitly deleted by the DELETE PLCC 
command, or by the downloading of a new set of compiled PLCs. 
In PMACs with flash memory backup, the SAVE command must be used after downloading in order for 
the compiled PLCs to be retained through a power-down or reset of the card.  The SAVE command copies 
the programs from active memory to the non-volatile flash memory.  At power-up/reset, the contents of 
the flash memory are copied into active memory. 

Running the Compiled PLCs 
I-variable I5 is the master control for both uncompiled and compiled PLCs.  The PLC programs can be 
individually enabled and disabled with the ENABLE PLC, ENABLE PLCC, DISABLE PLC, and 
DISABLE PLCC commands.  These can be given as on-line commands, or as buffered commands within 
motion programs, uncompiled PLC programs, or compiled PLC programs.  A PLC program can even 
disable itself.  Do not use the DISABLE PLCC command from within either PLC 0 or PLCC 0; they 
cannot be guaranteed to work here. 

It can be useful to think of the two bits of I5 as being like the master breakers for a house, and the 
individual program enable/disable controls as being like light switches within the house.  Both the master 
breaker and the light switch must be in the ON setting for the light to work.  The breakers and the light 
switches are separately controllable. 

When the compiled PLC programs are downloaded to PMAC, they are all individually enabled.  They 
will start running immediately if permitted by I5. 

On power-up/reset, all existing PLC programs, compiled and uncompiled, are individually enabled.  If I5 
was saved to a value that permits a given PLC program to run, it will be ready to run on power-up. PLC 1 
will be the first PLC to execute after power-up/reset (before even PLCC 1).  Many people use this as their 
reset PLC, executing once and disabling itself to prevent repeated execution.  This PLC program can be 
used to prevent other PLC programs from executing immediately on power up with DISABLE PLC and 
DISABLE PLCC commands.  In this way, power up can be done with only a choice of PLC programs 
enabled. 

Sending the <CONTROL-D> character is a quick way of disabling all PLC programs, compiled and 
interpreted. 
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Note 

It is never advisable to have PLC 0 or PLCC 0 running on power-up.  Therefore, 
do not save an I5 value of 1 or 3.  Instead, save I5 as 2; then in PLC 1 reset PLC, 
use a command sequence like: 
DISABLE PLCC 0 
DISABLE PLC 0 
I5=3 

The PLC 0 and/or PLCC 0 can then be enabled as needed. 
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WRITING A HOST COMMUNICATIONS PROGRAM 
Communicating From a Host Computer  
If communicating from a host computer to PMAC in the actual application, write a host communications 
program.  The PMAC Executive program that was used in development is not intended as a host program 
for an actual application; it was designed simply as a development tool. 

At a fundamental level, the host communications routines that are written send and receive strings of 
ASCII-coded characters to and from PMAC.  Create some low-level routines to send and receive 
individual characters and text lines; these will be called repeatedly, specifying the different text strings to 
read or write. 

The basic concepts of communications are covered in the Talking to PMAC section of this manual.  

Communications to the PMAC will take place over one of three PMAC communications ports (each 
version of PMAC has two of these ports).  Every PMAC has a serial port that can connect to a COM port 
on a host computer.  The PMAC-PC, -Lite, and -STD have a host port for bus communications to the 
host.  This port works exactly the same on all three versions.  The PMAC-VME has mailbox registers for 
communications over the VME bus to the host computer.  Instructions for using each of these ports are 
discussed in the following sections.   

This section covers the communications of text commands and text responses.  With the Option 2 dual-
ported RAM, completely binary methods of communications are possible, with the proper programs 
written on both the host computer and PMAC.   

Note 

Delta Tau provides several software libraries to make the development of host 
communications programs easier.  Most notably, the ACC-9P PCOMM library 
handles all of the low-level issues described in this section.  Much of the 
discussion in this section is not required if you are using one of these 
communications libraries. 

Polled vs. Interrupt-Based Communications 
Regardless of the port that is used, there are two fundamental methods for doing the handshaking on the 
passing of characters.  In the first method, the host can poll the PMAC interface, repeatedly if necessary, 
to see if it is ready to send or receive the next character or line.  In the second method, the PMAC 
interface will interrupt the host when it is ready to send or receive the next character or line. 

Polled communications handshaking is easier to write, but it is less efficient, because of the time the 
program can spend waiting for PMAC to be ready.  Interrupt-based communications is more efficient, 
because the host computer can be performing other tasks while PMAC is not ready, but it is much more 
difficult to write.  Initialize, vector, and unmask the interrupts, write the interrupt service routines, decide 
which routines disable which other interrupts, and you must restore the interrupts when completed. 

Serial Port Communications 
When communicating to the PMAC through the PMAC serial port, typically one of the COM ports in the 
host computer is used.  In an IBM-PC or compatible, usually these are the built-in COM1 and COM2 RS-
232 ports, but they can be on expansion cards as well.  Most COM ports, even on non-IBM-compatible 
computers, use the same ICs, so usually they have the same registers on the host side. 

Setting Up the Interface 
Every time the system is started up, the serial port of the host computer must be initialized to interface 
properly with the settings of PMAC.  This is done with some simple byte-write commands to the I/O 
space of the computer. 
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Base Address 
The first thing to know is the base address of the COM port in the computer’s I/O space.  In an IBM-PC, 
the COM1 port base address is at 3F8 hex (1016 decimal), and the COM2 port is at 2F8 hex (760 
decimal). 

Baud Rate 
Error! Bookmark not defined.Set up the baud rate counter in the host computer to match the PMAC 
baud rate, which is determined by the master clock and jumpers E40-E43.  The baud rate counter must be 
given a value equal to 115,200 divided by the baud rate (e.g., for 9600 baud, the value is 115,200/9600 = 
12).   
The following program segment illustrates how this can be done: 

outportb (combase + 3, 131); /* Put COM port in setup mode */ 
baud_count = 115200/baud; /* Calculate counter value */ 
outportb (combase, baud_count); /* Write to low byte of counter */ 
outportb (combase + 1, baud_count/256);   /* Write to high byte of counter */ 
outportb (combase + 3, 3); /* Put COM port back in normal mode */ 
 /* with 8 bits, 1 stop bit */ 

The command outportb is a byte-write command; combase is the base address; baud is the baud rate in 
bits per second. 

It is a good idea in the initial set up to compute a timeout value, related to both the baud rate and the host 
computer’s speed.  As the host polls PMAC to see if it is ready to communicate, a counter increments; if 
the counter exceeds the timeout value, the host should give up on this attempt to talk to PMAC.  
Depending on the circumstances, it should either just try again later (as when waiting for some 
asynchronous communications) or assume there is an error condition.  A good equation for the timeout 
value is: 

)100baudcount(speed7timeout +⋅⋅=  

where speed is 1 or 2 for a PC-XT, 3 or 4 for a 286-based computer, 5 to 6 for a 386-based computer, and 
7 to 9 for a 486-based computer. 

Sending a Character 
In polled communications, the host must see two status bits (write-ready bits) in the serial interface 
registers become one before it may write a character to the serial output port.  These two bits are Bit 5 of 
{base + 5}, and Bit 4 of {Base +6}.  A sample C code segment to do this is: 

i = 0;    /* Reset counter */ 
while (i++<timeout && (inportb(combase+5)&32==0); /* Loop until bit true */ 
while (i++<timeout && (inportb(combase+6)&16==0); /* Loop until bit true */  
if (i < timeout)outportb(combase, outchar);  /* Send character unless timed out */ 

Sending an entire line simply involves repeated calls to this routine, with a different outchar each time. 
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Reading a Character 
To read a character from the serial port, the host must prepare the port to read (it may want to do this for 
an entire line), then poll a status bit (read-ready bit) in a serial interface register; when this becomes one, 
the character may be read.  A sample C code segment to do this is: 

i = 0; /* Reset counter */ 
outportb(combase + 4, 2); /* Set port for input */ 
while (i++<timeout && (inportb(combase+5)==0); /* Loop until bit true */ 
if (i < timeout) inchar = inportb(combase); /* Get char. unless timed out */ 
disable(); /* Disable interrupts */ 
outportb(combase + 4, 0); /* Set port for output */ 
enable(); /* Re-enable interrupts */ 

To read an entire line in a single routine, turn around the port at the beginning and end of the line. 

Host Port Bus (PC/STDbus) Communications 
Host Port Structure 
The host port interface of PMAC, used for communications over the PC (ISA) and STD busses, occupies 
11 consecutive addresses of a 16-address region in the I/O space of the host computer (it is not memory 
mapped).  On the host side, these registers are accessed with byte-write and byte-read commands, such as 
outportb, inportb, outp, and inp.  On the PMAC side, the PMAC firmware takes care of the direct access 
to these registers, in response to commands from the host. 

Base Address Selection 
The location of the first of these 11 registers in the host computer's I/O space (the base address) is 
selected by the settings of jumpers E91-E92, E66-E71 on the PMAC-PC and PMAC-Lite; by jumpers 
W11 to W22 on the PMAC-STD.  Refer to the Jumper Descriptions section of the manual for actual 
setting information.  The addresses of these registers range from base address to base address +10.   

Register Functions 
Each of these 11 registers has a function for host communications, although only a few of them are used 
commonly, and some are not used at all.  The functions of the registers are: 

Register Functions 
Base Register Function 

Base + 0: Interrupt Control Register 
Base + 1: Command Vector Register 
Base + 2: Interrupt Status Register 
Base + 3: Interrupt Vector Register 
Base + 4: (Unused) 
Base + 5: High-Byte Data Transmit and Receive  
Base + 6: Middle-Byte Data Transmit and Receive 
Base + 7: Low-Byte Data Transmit and Receive 
Base + 8: Interrupt Controller Command Word 0 
Base + 9: Interrupt Controller Command Word 1 

Base + 10: Interrupt Acknowledge Word 

Registers for Simple Polled Communications 
Basic polled communications can be accomplished with just two of these addresses.  {Base + 7} holds 
each byte (character) as it is passed to or from the PMAC.  The read and write registers are separate, so do 
not worry about overwriting a character sent in the other direction.   
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{Base + 2} holds the handshaking status bits; even though this is called the Interrupt Status Register, it 
can be used for polled communications with the host:  The Write-Ready Bit (bit 1) is true when PMAC is 
ready to have the PC write it a character; and the Read-Ready Bit (bit 0) is true when PMAC is ready to 
have the PC read a character.   

Setting Up the Port 
No real setup is required for the host port, although it is advisable to write zero values to the high-byte 
and middle-byte registers to clear them.  The following sample C code segment does this: 

outportb (combase + 5, 0); /* Clear high-byte register */ 
outportb (combase + 6, 0); /* Clear mid-btye register */  

It is a good idea in the initial set up to compute a timeout value, related to the host computer's speed.  As 
the host polls PMAC to see if it is ready to communicate, a counter increments; if the counter exceeds the 
timeout value, the host should give up on this attempt to talk to PMAC.  Depending on the circumstances, 
it should either just try again later (as when waiting for some asynchronous communications) or assume 
there is an error condition.  A good equation for the timeout value is: 

100speed7timeout ⋅⋅=  

where speed is 1 or 2 for a PC-XT, 3 or 4 for a 286-based computer, 5 to 6 for a 386-based computer, and 
7 to 9 for a 486-based computer. 

Sending a Character 
To send a character, the host simply waits for the Write-Ready Bit to go true, and then writes the 
character to the output port, as this sample C code segment shows: 

i = 0; /* Reset counter */ 
while (i++<timeout && !(inportb(combase+2) & 2)); /* Loop until bit true */ 
if (i < timeout) outportb(combase+7, outchar); /* Write character */ 

Reading a Character 
To read a character, the host waits for the Read-Ready Bit to go true, then reads the character from the 
input port, as this sample C code segment shows: 

i=0; 
while (i++<timeout && !(inportb(combase+2) & 1)); /* Loop until bit true */ 
if (i < timeout) inchar = inportb(combase+7); /* Read character */ 

Using the PMAC-PC/STD to Interrupt the Host Computer 
The PMAC-PC, PMAC-Lite and PMAC-STD motion control cards have the capability of interrupting the 
host PC for any of a number of reasons.  This capability can give additional speed, power, and flexibility 
in the system, but using interrupts properly is one of the more demanding programming tasks on a PC.  It 
requires substantial programming experience and a lot of patience.  Once done, the rewards can be 
substantial in increasing the efficiency of the system. 

These PMACs have an on-board Intel 8259 Programmable Interrupt Controller IC (PIC).  This IC has 
eight inputs that can cause it to send an interrupt signal to the PC.  With a combination of hardware and 
software, what signals, if any, can be selected that will cause an interrupt to the PC. 

What Signals Can Be Used 
The eight inputs to the PIC are labeled IR0 to IR7.  IR0 has the highest priority; IR7 the lowest.  The 
PMAC design brings a variety of different signals into these inputs; on some of the inputs, what signal is 
brought to the input is chosen with jumpers. 
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The following table shows which signals match to each input on the PMAC-PC and PMAC-Lite.  Those 
signals marked with an asterisk (*) are not available on the PMAC-Lite: 

IPOS is the coordinate system in-position signal.  If the control panel is enabled (I2=0), it reflects the 
panel-selected coordinate system (by FDPn/ lines).  If the control panel is disabled (I2=1), it reflects the 
host-addressed coordinate system (by &n command).  For a coordinate system to be in-position, three 
conditions must be met: the desired velocity must be zero on all axes; no move timers can be active (in 
any move, DWELL, or DELAY); and all motors must have a following error smaller than the in-position 
band (Ix28). 

BREQ is the buffer request signal.  It is high when a regular buffer still has room for more lines to be 
entered (you can define how much memory left means enough room with I18).  When a rotary buffer is 
open, it is high when less than a prescribed number of lines ahead of the executing line (set by I16 and 
I17) have been loaded.  It is low when buffers are closed.  When a program line is sent to an open buffer, 
it is always set low, then set high again if the conditions as explained above warrant.  This rising edge can 
generate an interrupt to tell the host to send the next program line. 

 PMAC-PC/PMAC-Lite Input Signal Matching 
PIC Input PMAC Signal 

IR0 IPOS 
IR1 BREQ 
IR2 EROR 
IR3 F1ER 
IR4 HREQ 
IR5 EQU1 (thru E65) 

 EQU5 (thru E64)* 
 AXEXP1 (thru E63) 
 MI1 (thru E62) 

IR6 EQU2 (thru E61) 
 EQU6 (thru E60)* 
 AXEXP0 (thru E59) 
 MI2 (thru E58) 

IR7 EQU3 (thru E57) 
 EQU7 (thru E56)* 
 EQU4 (thru E55) 
 EQU8 (thru E54)* 

The following table shows which signals match to each input on the PMAC-STD: 

PMAC-STD Input Signal Matching 
Input Signal Input Signal 

IR0 RESET IR4 BREQ 
IR1 RESET/ IR5 EROR 
IR2 HREQ IR6 FE1 
IR3 IPOS IR7 (Software) 

EROR is the coordinate system fatal following error line.  If the control panel is enabled (I2=0), it 
reflects the panel-selected coordinate system (by FDPn/ lines).  If the control panel is disabled (I2=1), it 
reflects the host-addressed coordinate system (by &n command).  This signal goes high if any motor in 
the coordinate system exceeds the Ix11 warning following error limit. 

F1ER is the coordinate system warning following error line.  If the control panel is enabled (I2=0), it 
reflects the panel-selected coordinate system (by FDPn/ lines).  If the control panel is disabled (I2=1), it 
reflects the host-addressed coordinate system (by &n command).  This signal goes high if any motor in 
the coordinate system exceeds the Ix12 warning following error limit. 
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HREQ is the host request line of the PMAC processor.  This line can be used to do character-by-
character handshaking on communications with PMAC.  This line can mean read-ready and/or write-
ready, depending on the value of the byte that has been written from the PC to the PMAC base address 
register, the interrupt control register of the DSP (0 means neither, 1 means host read-ready generates an 
interrupt, 2 means host write-ready generates an interrupt, 3 means both generate an interrupt).  

EQUn is the compare-equals bit for PMAC encoder n.  It goes true when the encoder position matches 
the pre-loaded position- compare register value.  If not using the position-compare feature for an encoder, 
have the PMAC command this bit from a motion program or PLC program using an M-variable (by 
changing its polarity with the EQU out invert enable bit, bit 13 of the DSPGATE status/control word, 
Mx13 in the suggested M- variable definitions), thus allowing PMAC software to generate an interrupt 
for the PC. 

AXEXP0 and AXEXP1 bring in EQUn inputs from the PMAC Accessory-24 Axis Expansion Board.  
Jumpers on the ACC-24 control which EQUn line is brought in on the line.  These also may be set in 
PMAC software. 

MI1 and MI2 are PMAC Machine Inputs 1 and 2, which usually come from the system under control.  

(Software): This line in the PMAC-STD can be toggled from a PMAC program after assigning an M-
variable to bit 7 of Y-register $FFED (e.g. M10-> Y:$FFED,7,1).  Setting this M-variable to 1 
triggers the interrupt; setting it to 0 clears it. 

Selecting a Host Interrupt Line (PMAC-PC or -Lite) 
Use one (and only one) of the PMAC-PC or PMAC-Lite jumpers E76 to E84 and E86 to select which of 
the PC’s interrupt input lines (IRQn) will receive the signal generated by the PMAC PIC.  Jumpers E81-
E84 and E86 are for IRQ lines on the original PC connector; jumpers E76-E80 are for IRQ lines on the 
AT connector, which PC-XTs and their clones do not possess. 

These lines feed into an 8259 PIC in the PC itself; each line is a separate input (interrupt level).  The PC 
must then be programmed to recognize this particular interrupt level (the interrupt level must be 
unmasked and vectored) and react appropriately (through an interrupt service routine).  These will be 
explained below. 

Selecting a Host Interrupt Line (PMAC-STD) 
The user should use one (and only one) of the PMAC-STD CPU board jumpers W1, W2, and W3 to 
select between STDbus interrupt lines INTRQ*, INTRQ1*, and INTRQ2*, respectively. 

Interrupt Functions 
The first and most common use of these interrupts is for basic communications.  By using the HREQ line 
into the PIC, PMAC can interrupt the host PC whenever it has something to say to the host, and/or 
whenever it is ready to accept a character.  This can eliminate the need for the host to poll PMAC 
regularly to see if it is ready for communications.  Refer to the Appendix or the Executive Program 
diskette for demonstration PC programs. 
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In PMACINT.C note the setup particularly (unmasking and vectoring the PC interrupt properly), the 
interrupt service routine, and the restoration of the old interrupt setup and the end of the program. 

Note 

PMAC can also perform interrupt-based communications with the PC over the 
serial data port (RS-232. on the PC).  This interrupt capability is inherent in the 
PC's RS-232 port and does not rely on the PMAC PIC in any way, but from the PC 
end, it can be treated very much like the bus-communications interrupt scheme.  
Files are provided for those interested in this technique.  

There are other common uses of interrupts.  Use of the BREQ line allows for an interrupt-driven line-by-
line handshaking in the downloading of program lines that is useful for fast real-time communications to 
rotary program buffers..  The IPOS line can signal the host that the system has gotten to the proper 
position and stabilized so that the desired action is ready to be taken.  The F1ER line can tell the host that 
an axis is not following well and that remedial action needs to be taken.   
The EQUn lines can be used to signal the host that the actual position of an axis has reached a certain 
point so that the appropriate action can be taken.  Alternately, these are the best way to have a PMAC 
motion or PLC program interrupt the host during the program flow.  

Setting Up 
Proper setup of the interrupt structure, both in hardware and software, is essential to a properly working 
interrupt scheme.  Some tasks need be done only once in development; others must be done every time 
the system is powered on.  

Finding an Open Interrupt Line 
The first thing that must be done is to select an interrupt line on the PC that can be used.  The important 
thing is to find one that will not be used for other purposes during the time when the PC is working with 
PMAC using this interrupt.  PMAC can interrupt on lines IRQ2, IRQ3, IRQ4, IRQ5, and IRQ7 on all 
PCs, and also on lines IRQ10, IRQ11, IRQ12, IRQ14, and IRQ15 on PC-AT type computers.  Different 
versions of so-called compatible computers use these interrupts for different things; consult the users 
manual for your own model to see what interrupt line is used for what function.  Below is a table of 
"standard" uses for these interrupt lines.  It is often possible to borrow a COM or LPT interrupt for the 
duration of a PMAC-interfacing program if that port will not be used. 

Hardware Considerations 
Once the line is chosen, the electrical properties of the interrupt line must be considered.  Also here is an 
area where compatible PCs often are not really compatible.  Some use no pull-up resistors for these lines 
on the backplane, and those that do use pull-up resistors use different values.  PMAC-PC is shipped 
standard with a 470 ohm pull-down resistor (connecting D3 and R25, just above the AT connector).  
While this is sufficient to achieve an adequate low state on most PCs and clones, on some varieties with 
low-value pull-up resistors, a lower value pull-down may be required to get a valid low state.  Obviously, 
probing of the interrupt line may be required to verify proper operation — extender cards are a big help in 
this regard. 
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Standard Uses for Open Interrupt Lines 
Line Int # PC Use PC-AT Use 
IRQ2 0AH LPT2 IRQ8-15 
IRQ3 0BH COM2 COM2 
IRQ4 0CH COM1 COM1 
IRQ5 0DH Hard Disk LPT2 
IRQ7 0FH LPT1 LPT1 

IRQ10 72H xxx available 
IRQ11 73H xxx available* 
IRQ12 74H xxx available* 
IRQ14 76H xxx Hard Disk 
IRQ15 77H xxx available 

*IBM has reserved these for as yet unimplemented functions  

Initializing the PC’s PIC 
In software, the PC’s 8259 PIC must be set up (each time the PMAC application program is run) to react 
properly to an interrupt from PMAC.  This setup consists of two parts: vectoring and unmasking.  
Vectoring tells the PC where to go (at what address are the instructions to execute) when it receives the 
interrupt.  Unmasking enables the interrupt.  The TurboC 2.0 environment provides useful tools to make 
this process relatively easy, and will be used for example here; there are, of course, many other ways to 
do this. 

Vectoring 
In vectoring, usually the first step is to save the old vector so it can be restored on exiting the program.  
This is essential if borrowing an interrupt line.  In TurboC, this can be done using the getvect function, as 
in: 

oldvect = getvect(0x0d) 

This statement stores the existing interrupt vector for interrupt number 0d(hex) — IRQ5 — in the (long) 
variable "oldvect". 

The next step is to enter an interrupt vector.  Do this in TurboC with the setvect function, as in: 

setvect (0x0d, pmac_comm); 

The address of the interrupt service routine does not need to be specified, only the name of the routine — 
in this case pmac_comm. 

The unmasking step should wait until the PMAC has been set up properly.  

Setting up the Host Request Function 
To set up PMAC, first write a value to the DSP’s interrupt control register, which is at the PMAC base 
address in the PC’s port space (this address is set by jumpers E66-E71 and E91-E92).  This value will 
determine what, if any, character-by-character handshake interrupts will be used.  Refer to the HREQ 
description, above, for the proper value.  The TurboC command would be: 

outportb (base, value); 

(The equivalent Microsoft C command is outp (base, value);.) This command, or its equivalent in other 
languages, can also be used to perform the steps below.  
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Initializing the PMAC PIC 
Next, write to the PMAC PIC’s Initialization Command Words (ICWs) to set up the PIC properly.  
Although this IC is on PMAC, it is mapped into the PC’s port space as two registers at the PMAC base 
address plus 8 and 9. 

To do this, perform the following steps: 

• Write a byte of 17(hex) to [PMAC base address + 8].  This sets up ICW1 for edge-triggered 
interrupts. 

• Write a byte of 08(hex) to [PMAC base address + 9].  This sets up ICW2. 
• Write a byte of 03(hex) to [PMAC base address + 9].  This sets up ICW4 for 8086-mode operation. 
• Write a byte of FF(hex) to [PMAC base address + 9].  This writes to Operation Control Word 1 to 

mask all eight interrupts into the PMAC PIC. 

Unmasking Interrupts 
When ready to accept interrupts from PMAC, unmask the interrupt(s) into the PMAC PIC that will be 
active.  Write a one-byte argument in which every masked interrupt to the PMAC PIC is represented by a 
1; and every unmasked interrupt is represented by a zero.  For instance, to unmask IR4 alone, the 
argument would be ef(hex); to unmask IR5 alone, the argument would be df(hex).  The routines write this 
argument to the PMAC PIC's Operation Control Word 1 (OCW1).  Without the driver, use a command 
like: 

outportb (base+9, 0xef);   /* unmask IR4 only */ 

At this point, unmask the interrupt being used on the PC’s PIC.  First, disable the PC interrupts (TurboC 
command: disable(); ).  Next, read the current mask word at I/O port address 21(hex) with a command 
like: 

ch = inportb(0x21)  

Then unmask the new interrupt to be use by performing a bit-by-bit AND between the current mask word 
and a mask word that would enable only the new interrupt line — ef(hex) for IRQ4, fe(hex) for IRQ3.  
The C command for this is: 

ch = ch & 0xef 

The resulting new mask word is written back to I/O port address 21(hex) with: 

outportb (0x21, ch) 

Finally, re-enable the PC interrupts (TurboC command: enable();).  This completes the setup procedure. 

Using the Interrupts 
To react to an interrupt in actual use, write an interrupt service routine.  TurboC has a special type of 
routine that makes this relatively easy; in naming the routine, specify that it is an interrupt routine.  The 
routine header line is something like: 

static void interrupt far pmac_comm (void) 

Not need all of these words are needed in the declaration: the first void says that the routine will not 
return a value; interrupt specifies this as an interrupt service routine; far declares the address (referred to 
in setvect) to be a far pointer; pmac_comm is the name of the routine (called in setvect); the second 
"void" declares that this has no arguments (since it cannot). 
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The interrupt routine should first disable PC interrupts (for just long enough to make sure the necessary 
tasks can be done).  Then it should write an End-of-Interrupt byte to the PC PIC (I/O port address 
20(hex)).  This byte has a high nibble of six, and a low nibble with the IRQ line number.  For instance, if 
IRQ4 is used, the TurboC statment to do this is: 

outportb (0x20, 0x64) ; 

As soon as possible, the PC interrupts should be re-enabled.  When this can occur depends on how the 
program is structured. 

Now write an End-of-Interrupt byte to the PMAC PIC.  The byte is the same (six in the high nibble; 
hardware input (IR) line number in the low nibble).  For the PMAC PIC, this byte is written to the card’s 
base address plus eight in the PC’s I/O port space.  This could be done with an outportb command. 

Of course, somewhere in here, take the action that needs to be taken on receiving the interrupt, whether it 
is simply reading a character, sending a command line, or finding an error condition. 

Restoring Previous Vectors 
Before you exit your application program, you should remask your PC interrupt and restore the old 
vector, and mask the interrupts on the PMAC PIC.  The following TurboC code does this: 

setvect (0x0c, oldvect) ; /* Restore old IRQ4 vector */ 
disable () ; /* Disable PC interrupts */ 
ch = inportb (0x21) ; /* Get PC mask word */ 
ch = ch | 0x10 ; /* Make bit 4 equal 1 */ 
outportb (0x21, ch) ; /* Send new PC mask word */ 
enable () ; /* Re-enable PC interrupts */ 
outportb (base+9, 0xff) ;  /* Mask all PMAC interrupts */ 

VMEbus Communications 
Setting Up The Base Address For PMAC-VME 
PMAC-VME communicates with the VME bus as a slave device through a set of 16 8-bit mailbox 
registers., which are essentially 16 bytes of dual ported registers (not to be confused with Option 2V: 
8Kx16 dual ported RAM).  The mailbox registers occupy an address space on the VME bus, starting with 
the base address plus 1.   

Before communicating with PMAC-VME over the VME bus, the base address of the mailbox registers 
must be set up.  Determine what memory space is available in the VME system, such that PMAC-VME 
will not conflict with other existing devices in the VME system.  After selecting an address location, the 
next thing to do is to tell PMAC what VME bus address it will reside at.   

This is done through software programming.  In order to do this, an IBM-PC compatible computer 
running the PMAC Executive Software is needed, (or some suitable terminal software) talking to PMAC 
through the RS232/422 port (using, of course, an RS232/422 cable connected from the computer’s COM 
port to the PMAC J4 connector on the front bezel).  

Within the PMAC memory, there is a section of 10 registers or memory locations which contain the VME 
bus base address information, address modifier. and don’t care bits information, interrupt level and vector 
number, and the VME bus base address for dual ported RAM (if used).  These memory locations start a 
the PMAC X memory location X:$0783 and continue up through location X:$078C.   

Write values to these registers based upon the addresses and modes of operation selected for the PMAC-
VME through the RS232/422 port by using either the PMAC write memory command (W), or by using the 
VME Bus Address Configuration menu option in the PMAC Executive Software.   
Before going through an example the above registers need to be explained in some detail. 
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Address Modifier.  
The address modifier (AM) is simply a 5-bit code sent out on the bus by the host computer (or master 
device) each time a read or write is performed.  This AM informs slaves (cards on the VME bus listening 
to the master) what type of address is being sent, i.e. whether it is a short (16-bit), standard (24-bit), or 
extended (32-bit) address (for more information, consult a VME bus specification manual).  Tell PMAC 
(the slave) what AM to use.  The factory default for this register is $39, specifying standard 24-bit 
addressing.  While there is many address modifiers possible, only three are commonly used with PMAC-
VME: 

PMAC-VME Default Setup Register Values 
PMAC 
Memory    
Address 

Default 
Values 

Description 

X:$0783 $39 Address modifier (AM) 
X:$0784 $04 Address modifier Don’t care bits (In this example, address modifier bit 2 is a 

don't care bit, thus allowing AM = $29 or AM = $2D.) 
X:$0785 $FF PMAC base address bits A31 - A24 (not used when using A16 or A24 address 

bus) 
X:$0786 $7F PMAC base address bits A23 - A16 (not used when using A16 address bus) 
X:$0787 $A0 PMAC base address bits A15 - A08.  Selects base address with any address 

bus width, which must be an even number (i.e. address bit A08 must be 0). 
X:$0788 $02 Interrupt level. 
X:$0789 $A1 Interrupt vector number, which is the upper number of a vector pair (in this 

example, we have the vector pair A0-A1). 
X:$078A $00 Dual ported RAM starting address bits A23 - A20. 
X:$078B $60 Use $E0 with DPRAM. 

Use $60 without DPRAM. 
X:$078C $10 Address bus width select: 

$30 selects A16 address bus* 
$10 selects A24 address bus* 
$00 selects A32 address bus* 
*Add $80 to these values when using DPRAM. 

Address Modifier Don't Care Bits 
This register (X:$0784) simply states which bits of the address modifier are don't care bits..  In other 
words, this tells which bits of the AM are ignored.  The factory default of $04 tells PMAC to ignore bit 2 
(value of 4) of the AM, so for example, it will recognize both $39 and $3D as valid 24-bit AMs.  There 
should be no reason to change this from the default. 

Address Modifiers Commonly Used 
With PMAC-VME 

Address 
Modifier 

 
Function 

$29 A16 16-bit addressing 
$39 A24 24-bit addressing 
$09 A32 32-bit addressing 
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PMAC Base Address Bits 
The base address for PMAC-VME is split into three values since there are three registers (X:$0785 - 
$0787) here to contain the base address.  The first register holds address bits A31 through A24, the 
second holds bits A23 through A16, and the last holds bits A15 through A8 (the A8 bit must be 0).  
Address bits A7 through A0 of the base address are not specified, and therefore are taken to be all 0.  If 
the base address in hex is written, it is easy to figure out which address bits are A31 - A24, etc.   

Interrupt Level 
When PMAC-VME acknowledges the receipt of a command (valid or invalid) and/or has data to be read 
by the host computer (or master), typically it generates  (asserts) an interrupt on the VME bus.  This 
register (X:$0788) tells what interrupt level (from 1 to 7) will be used by PMAC.  The factory default is a 
value of $02 for interrupt level 2.  Therefore, when the host detects an interrupt on interrupt level 2, it is 
PMAC who generated this interrupt.  Be aware that the interrupt must be serviced or acknowledged by the 
host computer before PMAC withdraws its interrupt assertion. 

Interrupt Vector Number 
When an interrupt is generated by PMAC-VME, the host computer will also read an interrupt vector 
which is sent with the interrupt.  PMAC will send one of two interrupt vectors with each interrupt 
generated, indicating a particular condition.  The factory default is a value of $A1, which means PMAC 
will send either an $A0 or $A1 interrupt vector every time it generates an interrupt.  But when does 
PMAC send an $A0 vector and when does PMAC send an $A1 vector?  We know that PMAC generates 
an interrupt on the VME bus every time it has data to send, whether it is only one character (like a 
linefeed <LF> character) or several characters (like the current position of a motor).   

In this example (using the factory default), an $A0 vector will be sent every time PMAC receives a set of 
characters from the mailbox registers, whether it is a partial or full command line.  This is the PMAC way 
of acknowledging the receipt of a command line such as:  I100=1<CR> or  #1J+<CR>.  An $A1 
vector will be sent if there is data waiting to be read by the host.  For example, if asking PMAC for the 
value of a P-variable or ask to list a program in the PMAC memory, PMAC will generate an interrupt 
accompanied by an $A1 vector, indicating that there is data to be read in its mailbox registers (a detailed 
example of how to read and write to the mailbox registers is given in subsequent sections). 

Dual-Ported RAM Base Address 
The dual-ported RAM, if used, has a different base address from that of the mailbox.  This register 
(X:$078A) is where specify address bits A23 through A20 of the dual ported RAM (DPRAM) starting 
address.  The first four bits of this register specify A23-A20 of the base address.  The low four bits of this 
register should be set to 0.  For example, if the base address of the DPRAM is $780000, this register 
would be set to $70, where the 7 in the high four bits of the byte represents the 7 in bits 23-20 of the base 
address. 

If using A32 32-bit addressing, address bits A24-A31 of the DPRAM are the same as for the mailbox 
base address, as specified in X:$0785.   

Bits A19-A14 of DPRAM base address must be specified by the host computer every time the system is 
powered up or reset.  The host computer does this by writing a byte to the mailbox IC at the mailbox base 
address + $121.  The low 6 bits of this byte represent bits A19-A14 of the DPRAM base address. 

For example, with the mailbox base address at $7FA000 and the DPRAM base address at $780000, bits 
19 to 14 of the DPRAM base address can be represented as 100000 binary, or $20hex, so the host 
computer would write a byte value of $20 to bus address $7FA121. 

(The VME controller IC on PMAC uses this IC to permit dynamic switching between multiple "pages" of 
DPRAM.  The DPRAM IC on PMAC-VME has only one "page", but this page must still be dynamically 
selected by this operation.) 
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DPRAM Enable 
This register (X:$078B) enables or disables the DPRAM.  Write a $60 to this register if not using 
DPRAM; write an $E0 to this register if using DPRAM. 

Address Bus Width 
This register (X:$078C) states what size address bus being using, and whether DPRAM is installed or not.  
Select the proper value from the following table. 

Address Bus Width Register Setup Values 
Bus Width No DPRAM DPRAM 

16-bit $30 $B0 
24-bit $10 $90 
32-bit $00 $80 

Saving These Setup Values 
Once these settings have been made, save them to non-volatile memory.  Then reset the card ($$$ 
command), because PMAC only copies these values into the working registers on power-up/reset. 

Example 
If the VME address $7FA000 has been selected for the base address of the PMAC-VME, the address 
width is 24 bits and no DPRAM is installed.  An AM of $39 is being used with a don’t care bit value of 
$04 and interrupt level 2 using interrupt vectors $A0 and $A1 (which happen to be the factory defaults).  
The only real work to do is to break up the base address into four pieces.  It is sometimes best to rewrite 
the address in binary, and label the address bits, starting with A0 as the rightmost bit: 

Address Bit A31 A24 A23 A16 A15 A8 A7 A0 
Binary 0000 0000 0111 1111 1010 0000 0000 0000 
Hex 00 7F A0 00 

Clearly, there is a value of $00 for address bits A31 - A24, $7F for address bits A23 - A16, $A0 for bits 
A15 - A8 and $00 for bits A7 - A0.  Now write these values into the appropriate PMAC registers using 
the PMAC Executive Software or an suitable terminal communication program.  The register values 
would then be: 

PMAC Address Value 
X:$0783 $39 
X:$0784 $04 
X:$0785 $00 
X:$0786 $7F 
X:$0787 $A0 
X:$0788 $02 
X:$0789 $A1 
X:$078A $00 
X:$078B $60 
X:$078C $10 

A simple write command followed by a save command to PMAC will put these values into their 
appropriate registers and make them permanent: 
WX$0783,$39,$4,$0,$7F,$A0,$02,$A1,$0,$60,$10 
SAVE 
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Remember that these values must be saved and then the card reset (with the $$$ command, the INIT/ 
input line pulled low, or power cycled) before these new values will take effect.  If using the PMAC 
Executive Program, set up these registers using the Configure|VME Communications menu.   

Setting Up VME Dual-Ported RAM (Option 2V) 
If Option 2V is installed on the PMAC-VME, then configure its starting address.  This setup is done 
entirely through software in a manner similar to that of setting up the PMAC-VME mailbox registers.  
There is no hardware setup or connections for the Option 2V DPRAM on the PMAC-VME or PMAC2-
VME.  It is factory installed on the PMAC board itself.   

Starting Address 
Before choosing the DPRAM starting address, determine what memory space is available in the VME 
system (so that the PMAC DPRAM does not interfere with existing RAM or other devices on the VME 
bus).  Just like setting up the base address of PMAC-VME, the starting address of DPRAM is done 
through software, but in a somewhat different manner.  The best way to describe how to setup DPRAM is 
to give an example. 

Most will simply use the Configure|VME Communications window in the PMAC Executive program to 
set the address for DPRAM.  The following section explains how to perform this setup without the 
Executive program. 

Example 
Suppose a starting address of $1FC000 has been selected for the DPRAM.  Just like what was done for 
the base address of PMAC, it is best to rewrite this address in binary and label the address bits, starting 
with A0 as the rightmost bit: 

Address Bit A31 A24 A23 A16 A15 A8 A7 A0 
Binary 0000 0000 0001 1111 1100 0000 0000 0000 
Hex 00 1F C0 00 

There is a value of $00 for address bits A31 - A24, $1F for address bits A23 - A16, $C0 for bits A15 - A8 
and $00 for bits A7 - A0.  To tell PMAC where DPRAM should begin, break up this starting address into 
two parts:  

1. The first part will represent the value address bits A23 through A20. 
2. The second part will represent the value address bits A19 through A14. 

If using 32-bit addressing, address bits A31 through A24 for the dual-ported RAM are determined by the 
PMAC memory location X:$0785, which is also used for the same address bits of the base address of the 
mailbox registers.   

First write the value of address bits A23 through A20 into bits 7 through 4 (high order nibble) of the 
PMAC memory location X:$078A, i.e. the left hex digit (most significant bits) will be the value of 
address bits A23 - A20, and the other digit (right digit & least significant bits) will always be $0.  In this 
example, the value for address bits A23 - A20 would be $1, therefore write a value of $10 into location 
X:$078A.  Now we have to write the value of address bits A19 through A14 into the PMAC base address 
+ $121 (remember, from the previous examples, the PMAC base address is $7FA000).  This needs to be 
done every time PMAC is powered up or reset (either with the hardware reset line or use of the $$$ 
command).  In this example, constructing a 6-bit hex number from bits A19 - A14 gives a value of $3F: 

Address Bits A19 A18 A17 A16 A15 A14 
Binary 1 1 1 1 1 1 
Hex 3 F 
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So we write $3F from the VME host computer (master) into VMEbus location $7FA121 after PMAC is 
powered up or reset. 

At this point, the starting address of DPRAM is fully specified.  However check two more register 
locations in the PMAC memory to make sure they have appropriate values.  Location X:$078B must have 
a value of $E0 to enable the DPRAM chip installed on the PMAC-VME and modify the value in location 
X:$078C (the address width register) by adding $80 to the existing value.  For this example, the PMAC 
register values would be: 

PMAC Address Value 
X:$0783 $39 
X:$0784 $04 
X:$0785 $00 
X:$0786 $7F 
X:$0787 $A0 
X:$0788 $02 
X:$0789 $A1 
X:$078A $10 
X:$078B $E0 

 

X:$078C $90 
 

Note 

This "dynamic" addressing scheme provides the capability for addressing up to 1M 
byte of DPRAM in 16K byte blocks, by changing the value of base + $121 on the 
fly.  However, PMAC-VME currently utilizes only a single 16 Kbyte block (8K x 
16), so the base + $121 register only has to be written to once every time PMAC is 
powered up or reset. 

The shaded registers above contained the values changed (from previous example) to enable DPRAM.  A 
simple write command followed by a SAVE command to PMAC will put these values into their 
appropriate registers and make them permanent: 
WX$0783,$39,$4,$0,$7F,$A0,$02,$A1,$10,$E0,$90 
SAVE 

Remember that these values must be saved with the SAVE command and then the card reset (with the 
$$$ command, the INIT/ input line pulled low, or power cycled) before these new values will take effect.  
After writing $3F to $7FA121 (base + $121), the dual ported RAM is ready to be used.  See the PMAC 
Dual-Ported RAM User Manual for more information.   

Talking to PMAC-VME Through The Mailbox Registers 
Communicating with PMAC over the VME bus is different than talking over the RS232/422 port.  When 
reading and writing to PMAC-VME over the VME bus, make use of the 16 mailbox registers.  Mailbox 
registers are simply a set of 16 8-bit registers which are addressable from the VME bus beginning at the 
base address of the PMAC-VME card plus 1.  That is, if a PMAC base address of $7FA000 is selected, 
the first mailbox register (mailbox register #0) can be accessed at location $7FA001.  The second mailbox 
register (mailbox register #1) is located $7FA003, the third at $7FA005, and so on up to $7FA01F for the 
16th mailbox register (mailbox register #15).  The mailbox registers are located at odd addresses 
beginning with the base address plus one of PMAC.   
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Note 

Almost all PMAC-VME users purchase the Option 2 DPRAM and use the ASCII 
communications feature of the DPRAM rather than the ASCII mailbox 
communications described in this section.  The ASCII DPRAM communications is 
easier and faster.  Refer to PMAC Option 2, Dual Ported RAM User manual for 
details. 

Sending Commands to PMAC-VME Through Mailbox Registers  
When sending commands to PMAC, write to these mailbox registers.  This is relatively straightforward, 
although two rules must be followed: 

1. Never write to mailbox register #1 (this would be location $7FA003 in the example above) when 
sending commands to PMAC.  This mailbox register has a special purpose which will be covered 
later.  Knowing this, the second character of the command will have to be written to mailbox register 
#2 (the third mailbox register at location $7FA005), and so on. 

2. Write the first character of the message (or group of 15 characters in a long message) last; i.e. write 
all the other characters in the command first (beginning with mailbox register #2), and then write the 
first character into mailbox register #0 (at location $7FA001).  The reason for this is when writing to 
mailbox #0, PMAC immediately reads in all the mailbox registers and begins to act upon the received 
command line. 

Note 

Don't forget to end all your ASCII messages (commands) with a carriage return 
<CR>.  Control character commands, which do not require a <CR>, should be 
written directly into mailbox register #0. 

Example 
To send the commands to select motor #1 and jog to it combine two commands to do this on one line:  
#1J+<CR>.  There are five ASCII characters here, and thus write to five mailbox registers.  To send this 
command, issue five VME write commands.  Keep the same base address of PMAC from the previous 
example.  The following tables show the contents of the mailbox registers: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character  —- 1    

 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character  —- 1 J   

 
Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character  —- 1 J +  

 
Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character  —- 1 J + <CR> 
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Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B 
Mailbox # 0 1 2 3 4 5 
Character # —- 1 J + <CR> 

First write an ASCII 1 to location $7FA005, then a J to $7FA007, then a + to $7FA009, then a carriage 
return (ASCII code 13) to $7FA010, and finally a # to $7FA001. 

Example 
The above example works just fine for a command line of 15 characters or less (including the <CR> that 
was added to terminate the line), but if the command line contains more than 15 characters (Remember 
there are only 15 mailbox registers that can be written to, simply send the first 15 characters (do not send 
a <CR> yet.), followed by the remaining characters in succession until all characters have been written.  
And after the last character, send the <CR> which tells PMAC to act upon the command.  To download a 
motion program and if one the statements in the program happens to be the following line:  
IF(P1=1)DISPLAY"DELTA TAU"<CR>.  27 characters are here to send, and thus 27 VMEwrite 
commands must be performed.  The following tables again show the contents of the mailbox registers.  
After writing the first group of 14 characters (the characters F through Y in the above command line), the 
mailbox registers look something like this: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FA01F 
Mailbox # 0 1 2 3 14 15 
Character  —- F ( A Y 

Now, write the first character I: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FA01F 
Mailbox # 0 1 2 3 14 15 
Character I —- F ( A Y 

At this point, PMAC has taken these characters into its command queue, but has not done anything with 
them yet since no <CR> has been encountered yet.  It asserts the selected interrupt level (default is 2) and 
provides the command a receipt interrupt vector (default is $A0), which must be acknowledged.  Now we 
send the next 11 characters (D through " followed by a<CR>): 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FA01F 
Mailbox # 0 1 2 3 11 12 
Character  —- D E " <CR> 

Finally, send the first character of this second (and last) group of characters, which is a ": 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FA01F 
Mailbox # 0 1 2 3 11 12 
Character " —- D E " <CR> 

PMAC again asserts interrupt level 2 and provides the command receipt interrupt vector.  Since a <CR> 
has been included, PMAC knows that the command line has been sent.  PMAC now inserts this line into 
the program buffer previously opened (remember, in this example a motion program was being 
downloaded to PMAC). 
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Reading Data from PMAC-VME Through Mailbox Registers 
Now that data has been sent to PMAC-VME using the mailbox registers, determine how to read data from 
PMAC.  Reading data will involve using the interrupts and interrupt vectors generated by PMAC-VME 
over the VME bus.  In the following examples, the PMAC base address is at $7FA000 and the I-variable 
I3 is set to 2 (the best setting of I3. for writing host communications routines). 

The key to reading data from PMAC through the mailbox registers is that writing to mailbox register #1 
permits PMAC to place its data in the mailbox registers when it has something to say.  This can be done 
ahead of time; effectively pre-enabling the PMAC response.  This is the strategy used in all of the 
following examples.   

If not pre-enabling, write to mailbox register #1 only when immediately expecting a response, which is 
usually after acknowledging the $A0 interrupt (see examples).  If this is not done, PMAC will not 
interrupt with the $A1 vector.  (The only real advantage in not pre-enabling is that the middle of a long 
PMAC response can be broken to issue a command.)  Note that if using the pre-enable strategy, pre-
enable once after power-up or reset.  Refer to the flowchart in figure 3-1 after reading the following 
examples. 

Example 
This command line has been sent to PMAC:   #1J+<CR>.  This command line is not a request for any 
data, so PMAC will not respond with any data except an acknowledge <ACK>, signifying an 
acknowledgment of receipt of a valid command line (if an invalid command was sent, a <BELL> 
character would be sent instead of <ACK>).  In this case, PMAC will generate an interrupt, sending with 
it an interrupt vector $A0 (as defined in PMAC register X:$0789).  After seeing this interrupt and 
accompanying interrupt vector, the VME master or host computer must properly service or acknowledge 
this interrupt so that PMAC will withdraw its interrupt assertion.  (Generally, when servicing any VME 
interrupt, the interrupt vector will be available.) 

PMAC will then interrupt again, this time with interrupt vector $A1, signifying there is new data in the 
mailbox registers to be read.  Now, read mailbox register #0 (at $7FA001) to pick up the <ACK> 
character put there by PMAC, if desired, but this is only necessary to verify that the command line just 
sent was received as a valid command by PMAC.  Finally, write $00 into mailbox register #1 (location 
$7FA003), allowing PMAC to write new data into the mailbox registers if necessary (also read the next 
example to better understand this).  The next example shows how to read data written in the mailbox 
registers by PMAC. 

Example 
Assume the command to ask for the position of motor 1 #1P<CR> has been sent: PMAC, of course, will 
respond with data containing position information of motor 1.  Motor 1 is currently at position 19.2.  To 
read the mailbox registers to obtain this information PMAC has waiting.  The first thing to do is to send 
the command line and service the interrupt PMAC generates (using an interrupt vector of $A0) as an 
acknowledgment.   

After PMAC has processed the command and put data into the mailbox registers, PMAC interrupts a 
second time with an interrupt vector $A1.  Remember, this second interrupt is sent because PMAC has 
just now placed data in the mailbox registers, now ready to be read.  Service this second interrupt and 
note that the accompanying interrupt vector is $A1, read the data in the mailbox registers.   

Actually, these registers can be read in any order, but it is best to read these characters beginning with the 
first mailbox until either:  

• a <CR> (signifying the end of that line) or 
• a <ACK> (valid command line received) is encountered or  
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• a <BELL> (invalid command line received) is encountered or 
• all 16 mailbox registers (from $7FA001 to $7FA01F) have been read.   

These mailbox registers may be read as many times as needed because PMAC will not write new data 
into the mailbox registers (if PMAC has more data to send) until a value of $00 is written to mailbox #1 
(in this case, at $7FA003).   

In this example, PMAC will have six characters waiting to be read: 19.2<CR><ACK>.  (Assume that I-
variable I3 is set to 2.)  The data will be in the registers as follows: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 
Mailbox # 0 1 2 3 4 
Character 1 9 . 2 <CR> 

Start reading the characters at $7FA001, mailbox register 0. There is a <CR> in mailbox register 4, so 
stop reading, and write a $00 into mailbox register 1 to tell PMAC it is fine to send more.  Since PMAC 
must still send the final <ACK> it interrupts again, and it is in the mail box registers: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 
Mailbox # 0 1 2 3 4 
Character <ACK> 9 . 2 <CR> 

Now start and stop at mailbox register 0, because it contains an <ACK>. Now, simply read in these 
characters beginning with mailbox register #0 at $7FA001.  Never write into mailbox register #1 when 
sending data to PMAC-VME.  This is because PMAC will be allowed to write new data into the mailbox 
registers as soon as we write to mailbox #1.  (Incidentally, it actually does not matter what value is 
written into mailbox register #1, it’s the fact that this register is written to that counts.  However, it is 
recommended to write a value of $00 into mailbox register #1 for reasons given later.)  After writing a 
$00 into mailbox register #1, PMAC may or may not interrupt again, depending on whether or not PMAC 
still has more data to be read.   

Example 
Again assume that the command to ask for the contents of memory locations X:$1000 through X:$1002 
has been sent: RHX$1000,3<CR>. These three locations contain the values $123456, $789012, and 
$345678.  To go and read the mailbox registers, send the above command line and service the interrupt 
PMAC generates (using an interrupt vector of $A0).   

After PMAC has processed the command and put data into the mailbox registers, PMAC interrupts a 
second time with an interrupt vector $A1.  Remember, this second interrupt is sent because PMAC has 
just now placed data in the mailbox registers, which is now ready to be read.   

Service the second interrupt and note that the accompanying interrupt vector is $A1. Read the data in the 
mailbox registers.  In this example, PMAC will have 22 characters to be read: 123456 789012 
345678<CR> <ACK>, with the first 16 of them in the mailbox registers.  (Assume that I-variable I3 is 
set to 2 again.)  The data will be in the registers as follows: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FA01F 
Mailbox # 0 1 2 3 14 15 
Character 1 2 3 4 3 4 
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Read the mailbox registers, beginning with the first one until a <CR>, <ACK>, <BELL> is encountered, 
or all 16 registers have been read.  In this case, the first 16 characters PMAC has does not contain a 
<CR>, <ACK>, or <BELL>. Therefore read all 16 mailbox registers to obtain the first 16 characters of the 
PMAC response, and then write $00 to mailbox register #1 (in this case, at $7FA003) to allow PMAC to 
put the next chunk of data in the mailbox registers.  PMAC interrupts again with vector $A1, and the 
remainder of the characters in the mailbox registers are: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FA01F 
Mailbox # 0 ... 4 5 14 15 
Character 5 ... <CR> 2 3 4 

Now we read again the mailbox registers, looking for <CR>, <ACK>, or <BELL>.  The fifth character we 
read in mailbox #4 ($7FA009) happens to contain a <CR>, so we stop reading and write $00 into mailbox 
register #1.  Because PMAC still has to send the final <ACK> character, it interrupts us again with vector 
$A1 and we see in the mailbox registers: 

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FA01F 
Mailbox # 0 ... 4 5 14 15 
Character <ACK> ... <CR> 2 3 4 

Now stop at the first character, <ACK>, which serves as the end-of-transmission character, and again 
write $00 into mailbox register 1.  Since PMAC does not having any more data to be read for now, there 
will not be another interrupt (until another command is sent or one of our executing PLC or motion 
programs puts out data via the CMD or SEND command).   

The diagram on the following page summarizes communications over the VME bus using the mailbox 
registers. 

When PMAC is asked to list out a motion program or PLC with a command like: LIST PROG 10 or 
LIST PLC 0, PMAC will have multiple lines of data to be read.  Simply wait for the interrupt to occur, 
read the mailbox registers, write $00 to mailbox register #1, and wait to be interrupted again, repeating 
this procedure until all data from PMAC has been sent and read.   

Dual-Ported RAM Communications 
The PMAC Option 2 provides an 8K x 16 bit dual-ported RAM that allows PMAC and its host to share 
an area of fast memory.  For the PMAC-PC and the PMAC-Lite, Option 2 is a separate board that sits on 
the PC bus and cables to PMAC.  For the PMAC-VME, Option 2(V) consists of ICs added to the main 
board itself.  Option 2 is not available for the PMAC-STD.  The dual-ported RAM can be used for 
extremely fast communication of data and commands to and from PMAC.   

Uses of DPRAM 
The typical use in writing to PMAC is for a very fast repetitive downloading of position data and/or 
rotary program information in real time.  The typical use in reading from PMAC is getting very fast status 
information repetitively. 

Data such as motor status, position, velocity, following error, etc., can be continuously updated and 
written to DPRAM by PLC programs or automatically by PMAC.  Without using DPRAM, this data must 
be accessed by sending PMAC on-line commands, such as ?, P, V, and F, through the VME mailbox 
registers or over the PCbus.  This same data may be obtained much faster via the DPRAM without the 
time required to send the command through the communications port and wait for the response. 
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PMAC provides many facilities for using the dual-ported RAM (DPRAM) to pass information back and 
forth between the host computer and PMAC.  These facilities are comprised of the following functions: 

• DPRAM Control Panel Function (Host to PMAC) 
• DPRAM Servo Data Reporting Function (PMAC to Host) 
• DPRAM Background Fixed Data Reporting Function (PMAC to Host) 
• DPRAM Background Variable Data Reporting Function (PMAC to Host) 
• DPRAM ASCII Communications Buffer (Bidirectional) 
• DPRAM Binary Rotary Program Buffer (Host to PMAC) 
• DPRAM Data Gathering Buffer (PMAC to Host — already existing) 
• DPRAM <CONTROL-W> ASCII Command Function (Host to PMAC — already existing) 

In addition to these automatic functions, otherwise unused registers can be accessed in the DPRAM 
through the use of M-variables on the PMAC side, and through pointer variables on the host side, for 
sending data either way between the host and PMAC.  The M-variable formats likely to be used are X:, 
Y: (for 1 to 16 bits), DP: (for 32-bit fixed point), and F: (32-bit floating point).  For sending data back to 
the host, the PMAC data gathering function can also be used, directed to the dual-ported RAM rather than 
the regular RAM (I45 controls).  See the PMAC DPRAM User manual (Option 2 manual) for details. 

Using Multiple PMAC-VME Cards On the VME bus 
Install multiple PMAC-VME cards on the VME bus.  Up to 16 PMAC-VME cards may be controlled by 
a single host computer.  Each card, or course, must have a unique base address and DPRAM starting 
address (if installed) such that none of the cards overlap each other (or any other device on the VME bus) 
in memory.  Also set up each card to have unique interrupt levels with unique interrupt vector numbers.  
Each PMAC-VME card occupies 512 VME bus memory locations (not including the 8K of memory 
space taken up by DPRAM).  That is, if the first PMAC-VME is base addressed at $7FA000, the second 
PMAC card must be base addressed at $7FA200. If there are PMAC-VME cards installed on the VME 
bus, with the first card starting at $7FA000, the addresses of the mailbox registers (MB) of each card 
could be set according to the following table. 

 Suggested Base Addresses For Multiple PMAC-VMEs 
 Card 0 Card 1 Card 2 Card 3 Card 4 Card 5 Card 6 Card 7 
Base 7FA000 7FA200 7FA400 7FA600 7FA800 7FAA00 7FAC00 7FAE00 
MB #0 7FA001 7FA201 7FA401 7FA601 7FA801 7FAA01 7FAC01 7FAE01 
MB #1 7FA003 7FA203 7FA403 7FA603 7FA803 7FAA03 7FAC03 7FAE03 
MB #2 7FA005 7FA205 7FA405 7FA605 7FA805 7FAA05 7FAC05 7FAE05 
MB #3 7FA007 7FA207 7FA407 7FA607 7FA807 7FAA07 7FAC07 7FAE07 
MB #4 7FA009 7FA209 7FA409 7FA609 7FA809 7FAA09 7FAC09 7FAE09 
MB #5 7FA00B 7FA20B 7FA40B 7FA60B 7FA80B 7FAA0B 7FAC0B 7FAE0B 
MB #6 7FA00D 7FA20D 7FA40D 7FA60D 7FA80D 7FAA0D 7FAC0D 7FAE0D 
MB #7 7FA00F 7FA20F 7FA40F 7FA60F 7FA80F 7FAA0F 7FAC0F 7FAE0F 
MB #8 7FA011 7FA211 7FA411 7FA611 7FA811 7FAA11 7FAC11 7FAE11 
MB #9 7FA013 7FA213 7FA413 7FA613 7FA813 7FAA13 7FAC13 7FAE13 
MB #10 7FA015 7FA215 7FA415 7FA615 7FA815 7FAA15 7FAC15 7FAE15 
MB #11 7FA017 7FA217 7FA417 7FA617 7FA817 7FAA17 7FAC17 7FAE17 
MB #12 7FA019 7FA219 7FA419 7FA619 7FA819 7FAA19 7FAC19 7FAE19 
MB #13 7FA01B 7FA21B 7FA41B 7FA61B 7FA81B 7FAA1B 7FAC1B 7FAE1B 
MB #14 7FA01D 7FA21D 7FA41D 7FA61D 7FA81D 7FAA1D 7FAC1D 7FAE1D 
MB #15 7FA01F 7FA21F 7FA41F 7FA61F 7FA81F 7FAA1F 7FAC1F 7FAE1F 
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In addition to having unique addresses, each PMAC-VME must also have unique interrupt vector 
assignments.  However, all the PMACs may use the same interrupt level (interrupt level 2 in the previous 
examples).  Table 5.2 below shows suggested interrupt vector assignments for each PMAC-VME card. 

Write to base + $121
    (if using DPRAM)

Write $00 into
maibox reg #1

Send command line to PMAC
        (up to 16 characters)

Wait for interrupt

 Read $A0 interrupt vector
and acknowledge interrupt

Power up or
reset PMAC

   Send
a line to
 PMAC?

       All
characters
     sent?

NO

YES

YES

NO

 Read $A1 interrupt vector
and acknowledge interrupt

Write $00 into
maibox reg #1

 Has an
interrupt
ocurred?

YES

NO

Read mailbox regs until:
1) <CR> encountered
2) <ACK> encountered
3) <BELL> encountered
4) All 16 regs have been read

 
Figure 56 PMAC-VME Communications Flow Diagram 
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PMAC-VME Interrupt Vector Assignments  
PMAC-VME  

Card Number 
Interrupt Vector Pair 

0 $A0,$A1 
1 $A2,$A3 
2 $A4,$A5 
3 $A6,$A7 
4 $A8,$A9 
5 $AA,$AB 
6 $AC,$AD 
7 $AE,$AF 

It is possible to keep all of the PMACs in a rack completely synchronized by sharing clock signals over 
extra lines on the serial port.  To do this, simply daisy chain a cable between all the PMAC-VME J4 
connectors in the rack.  If this method is used, one PMAC-VME must have jumpers E40 through E43 
configured so it becomes card 0 (since card 0 outputs the synchronizing clock).  All the other PMACs 
must have E40 - E43 set for higher card numbers (card 1, 2, etc. which input the synchronizing clock). 

If the PMACs are not sharing a common clock signal, all PMAC-VMEs in the rack must have jumpers 
E40 - E43 configured for card 0.  Without the common clock signal, action on the different cards can drift 
apart, since each card references time from its own crystal oscillator.  However, the tolerances on the 
oscillators are so tight that no drift would be noticed until after 10 or 15 minutes of continuous motion. 

Data Integrity Checks 
Serial Parity Check 
PMAC has the capability to do parity checks on serial communications.  If jumper E49 is removed, 
PMAC will expect an odd parity bit on each character it receives from the host over the serial port, and it 
will send an odd parity bit with each character it sends to the host over the serial port.   

If PMAC detects a parity error in any character in the command, it sets a flag so that the entire command 
line will be rejected with a syntax error after PMAC receives the <CR> character.  If I4=0 or 1, PMAC 
also immediately sends a <BELL> character to the host to notify it of the error on the character.   

With I4=2 or 3, the host should just check for a <BELL> character at the end of the line.  However, there 
is no direct way to tell whether this was due to a parity error or a real syntax error.  Also, if the parity 
error occurred on the <CR> character itself, PMAC would not respond at all, since it never saw the end of 
the line.  In this case, the host must be prepared to time-out gracefully, and either resend the <CR>, or 
send a <CTRL-X> to clear out the line. 

With I4=0 or 1, the host can either check for the <BELL> character after every character it sends, or wait 
until the end of the line.  In either case, upon receiving the <BELL> character, the host should send a 
<CTRL-X> command to clear out the PMAC communications buffers in both directions.  The host 
should then check for incoming characters for a period of time equivalent to the transmission time for 
three characters, discarding any characters it receives, to ensure any characters already in transmission 
have been eliminated.  Then it can re-send the line. 

If jumper E49 is ON, parity is disabled in both directions.  PMAC will not be expecting a parity bit, and if 
one is sent it will create a framing error (see below).  PMAC will not send parity bits with the characters it 
transmits. 
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Serial Framing Error Check 
PMAC has the capability to check for framing errors on the serial port commands sent to it.  This check is 
always active.  If PMAC detects a framing error in any character in the command, it reacts just as it would 
for a parity error, including the I4 control of the response. 

Serial Duplex Control 
PMAC has the capability to confirm serial transmissions to it by immediately echoing back every 
character it receives over the serial port.  This mode, known as full duplex, can be turned on and off by 
sending PMAC the <CTRL-T> command.  PMAC powers up in half-duplex mode, not echoing received 
characters, so the host must send PMAC a <CTRL-T> command to enable full duplex. 

To perform the echoing, PMAC accepts the character, writes it to its input queue in memory, and then 
copies it from memory to its transmission port.  Therefore, this is a complete check of the command 
cycle.  If the host receives an echoed character different from the one it sent, it should send a <CTRL-X> 
character to clear out the command line, then re-send the command line. 

Communications Checksum 
PMAC is capable of performing checksum calculations on communications lines sent between it and the 
host computer.  This mode is enabled when I4.=1, and disabled when I4.=0.  It will operate for serial, PC 
bus, STD bus, or VME bus communications.. 

PMAC computes the checksum of the individual bytes (characters) in a communications line sent in 
either direction between it and the host.  It simply adds together the ASCII value of each character into an 
accumulating sum.   

At the appropriate time, it sends the checksum — at least the low byte — to the host.  It is the host’s 
responsibility to make the comparison between the checksum that PMAC has computed and the one that 
it has computed itself.  PMAC does not do this comparison.  The host should never send a checksum byte 
to PMAC. 

The way the checksum works is subtly different between host-to- PMAC communications and PMAC-to-
host communications.  Each case is explained in detail below: 

Host-to-PMAC Checksum 
After a full command line, including the terminating Carriage-Return (<CR>) byte has been sent to 
PMAC, PMAC will parse the line to figure out what action it has to take.  As it parses the line, it 
computes an accumulating checksum of all the character bytes in the command line.  The checksum does 
not include any control characters, either those that may have been interjected into the middle of the line, 
or the trailing <CR> character. 

PMAC will return the checksum to the host immediately after it sends the acknowledging handshake 
character, if any.  (For I3.=0, there is no acknowledging character, for I3=1, PMAC uses <LF>, for I3=2 
or 3, PMAC uses <ACK>.)  If the command required a data response from PMAC, the acknowledging 
character and the checksum are returned to the host after the data response to the command (and after the 
checksum for the data response).  If PMAC detects an error in the command line through its normal 
syntax checking, it will respond with the <BELL> character (for all values of I3), but it will not follow 
this with a checksum byte — the line has been thrown away. 

PMAC-to-Host Checksum 
PMAC will compute the checksum of any communications line it sends to the host.  This checksum 
includes control characters sent with the line, including leading line- feed <LF> characters, if any, and the 
final <CR> character.  The checksum is sent immediately following the <CR> character.  For a multiple-
line transmission, one checksum is sent for each line of the transmission, immediately following the 
<CR> for that line. 
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If the PMAC-to-Host transmission was prompted by a host command, at the end of the full transmission 
(which could be multiple lines), PMAC will send the acknowledging handshake character, if any, 
followed by the checksum of the host command.  If the transmission was prompted by a SEND or CMD 
statement in a PMAC program, there is no acknowledging handshake character, or checksum of the 
command (there is a checksum of the response). 

Checksum Format 
In general, the checksum of a line can be more than one byte long — as the byte values add up, the 
checksum rolls over into a second byte.  When using the serial port or the VME bus port, PMAC sends 
only the low byte.  The value in this byte is that of the full checksum modulo 256.  When using the PCbus 
or VMEbus, PMAC sends the low byte to the normal communications register (base address + 7), but 
simultaneously sends the high byte to the adjacent register (base address + 6).  There is the choice of 
picking up just the low byte, or both bytes. 

Example 
With I3=3 and I4=1, and assuming P100=35, Q10=0, Q11=1, and Q12=2: 
Host sends: J+<CR> 
PMAC sends: <ACK><117dec> (117=74[J] + 43[+]) 
Host sends: P100<CR> 
PMAC sends: <LF>35<CR><127dec> (127=10+51+53+13) 
  <ACK><225dec> 
 (225=80+49+48+48) 
Host sends: Q10..12 
PMAC sends: <LF>0<CR><71dec> (71=10+48+13) 
  <LF>1<CR><72dec> 
 (72=10+49+13) 
  <LF>2<CR><73dec> 
 (73=10+50+13) 
  <ACK><369or113dec>   
(369=81+49+48+46+46+49+50) 
  (113=369 modulo 256) 

Data Gathering 
PMAC has a general purpose data gathering function for repetitive on-the-fly storage of real-time data.  In 
this function, PMAC can store the contents of up to 24 memory locations at specified intervals up to the 
servo interrupt frequency.  This data is stored in a buffer in open PMAC memory for later transmission to 
the host.  This feature is useful for filter tuning and motion problem solving.   

Executive Program Data Gathering 
Usually, this feature is used in conjunction with the PMAC Executive Program on the PC, which handles 
the details of this function automatically.  Refer to the Executive Program manual for details.  It is 
possible (although not trivial) to write a custom host program to utilize this feature. 

Gathering I-Variables 
Specify up to 24 source addresses in I-variables I21 to I44.  The low 16 bits of these variables represent 
the word address itself.  The top 2 bits control whether the X word, the Y word, or both (in fixed or 
floating format) will be gathered.  A mask is set in I20 to specify which of these addresses will be 
collected, and the gathering period is defined in servo interrupt cycles with I19. 
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Gathering Commands 
The buffer in the PMAC memory is set up with the on-line DEFINE GATHER [{constant}] 
command.  If no value is specified, the whole of the PMAC open memory is reserved for this buffer.  
(This means that no new motion or PLC programs can be added to PMAC as long as this space is 
reserved).  The actual data gathering function is started with the GATHER command.  When this has been 
done, PMAC will store the specified data at the specified rate into the gather buffer until told to stop with 
the ENDG, or until space runs out. 

The stored data can be uploaded to the host with the LIST GATHER command.  The data is sent to the 
host in ASCII hexadecimal form, with six characters per item for the single (X or Y) words, and 12 
characters per item for the double (L or D) words.  The data is provided in twelve-character groupings.  If 
the data gathered for a sample leaves the last grouping with only six characters, this last grouping is filled 
out with the contents of the servo cycle counter register. 

It is the host program's responsibility to decode and process this data, for plotting, storage, analysis, or 
other use.  

The space reserved for the data gathering buffer can be freed with the DELETE GATHER command. 

On-line Data Gathering 
The <CONTROL-E> command is a sort of single-shot data gathering.  On receipt of this command, 
PMAC reports the contents of the registers specified by I20-I44 to the host.  Here, the contents are sent in 
binary, not ASCII form, and without any handshaking characters.  There are three bytes per short word, 
and six bytes per long word.  This command is useful for quick status and position querying. 

Real-Time Data Gathering Through Dual-Ported RAM 
Using the dual-ported RAM., it is possible to perform the PMAC data gathering function and upload the 
gathered data to the host computer in real time.  (The standard data gathering. function — used by the 
PMAC Executive Program to produce plots — performs the data gathering. in real time, storing to open 
regular RAM in PMAC, then uploads to the host afterwards.)  This real-time uploading requires tight 
handshaking between the host and PMAC to ensure that the data is passed reliably and efficiently. 

Setting Up 
The DPRAM data gathering function is set up the same way as for the standard data gathering function, 
with PMAC I-Variables I19 to I44 controlling what data is to be gathered and how often.  To specify data 
gathering into the DPRAM, I45 should be set to 3 (it is set to 0 for the standard gathering). 

The buffer for temporary storage of the gathered data is established by the DEFINE GATHER 
{constant} command, where {constant} is the size of the buffer in PMAC words (each PMAC 
word is 32 bits in the DPRAM).  The buffer always starts at PMAC word address $D200, which from the 
host side is DPRAM base address plus $0800 (2048) bytes.   

Each short data source occupies one word in the buffer; each long data source (fixed-point or floating-
point) occupies two words.   

Set the size of the buffer based on the number and length of the data sources, and the worst-case number 
of gathering cycles that the host could fall behind in reading data from the DPRAM.  This size must not 
be greater than 3500 for the 8Kx16 DPRAM.  Typical sizes are 20 to 100 words. 

The DPRAM gathering function is started and stopped the same as for the standard gathering: either with 
the GATHER and ENDGATHER (ENDG) commands, or by setting and clearing the data-gather control bits 
directly through M-variables. 
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Getting the Data 
Once the gathering function has begun, the host must monitor registers in the DPRAM that contain 
pointers to the data that has been loaded into the DPRAM.  There are two key registers, and only one of 
these needs to be read repeatedly.  At the DPRAM base address plus $07FE (2046) is the pointer to the 
end of the buffer.  This value is determined by the DEFINE GATHER command and will be fixed for a 
given application.   

At the DPRAM base address plus $07FC (2044) is the pointer to the next address where gathered data 
will be placed in DPRAM.  It is this register that the host should monitor repeatedly to see if it has 
changed — meaning that new data has been placed in the DPRAM — and if it has changed, how many 
times data has been placed. 

Both of these registers contain a PMAC memory word address (actually the offset from the start of the 
gather buffer, $D200).  To translate into a host memory byte address, the following equation should be 
used: 

Host_address = (DPRAM_base_address + $0800) + 4 * (Pointer_value) 

The value of the storage pointer will wrap back to 0 (PMAC address $D200) when it becomes greater 
than or equal to the value of the buffer-end pointer.  No item will be stored in the DPRAM starting at the 
PMAC word address shown by the buffer-end pointer, although if a long item would start to be stored in 
the previous DPRAM word, the second half would be placed in the actual buffer-end word. 

Data Format 
Data is stored in the buffer in 32-bit sign-extended form.  That is, each short (24-bit) word gathered from 
PMAC is sign-extended and stored in 32-bits of DPRAM (LSByte first).  The most significant byte is all 
ones or all zeros, matching bit 23.  Each long (48-bit) word is treated as 2 24-bit words, with each short 
word sign-extended to 32 bits.  The host computer must re-assemble these words into a single value. 

To reassemble a long fixed-point word in the host, take the less significant 32-bit word, and mask out the 
sign extension (top eight bits).  In C, this operation could be done with a bit-by- bit AND: (LSW & 
16777215).  Treat this result as an unsigned integer.  Next, take the more significant word and multiply it 
by 16,777,216.  Finally, add the two intermediate results together. 

To reassemble a long floating-point value in the host, first split the 64-bit value into its pieces.  Bits 0 to 
11 of the 32-bit word at the lower address form the exponent.  Bits 12-23 of this word form the low 12 
bits of the 36-bit mantissa.  Bits 0-23 of the 32-bit word form the high 24 bits of the mantissa; bits 24-31 
are sign extension.  The following code shows one way of creating these pieces (not the most efficient): 
exp = first_word & 0x00000FFFL; // Select low 12 bits for exponent 
low_mantissa = (first_word >> 12) & 0x00FFFL; 
// Select next 12 bits for mantissa  
// shift right and mask high_mantissa = second_word; 

The floating point value can then be reconstructed with: 
mantissa = high_mantissa * 4096.0 + low_mantissa; 
value = mantissa * pow (2.0, exp - 2047 - 35); 

2047 is subtracted from the exponent to convert it from an unsigned to a signed value; 35 is subtracted to 
put the mantissa in the range of 0.5 to 1.0.   
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The following procedure in C performs the conversion efficiently and robustly: 
double DPRFLoat (long first_word, long second word) { 
 // return mantissa/2^35 * 2^(exp-2047) 
 double mantissa; 
 long int exp; 
 m = (double)(second_word) * 4096.0 +  
 (double)((first_word>>12) & 0x00FFFL); 
 if (m == 0.0) return (0.0); 
 exp = (first_word & 0x00000FFFL) - 2082; // 2082=2047+35 
 return (mantissa * pow(2.0 * (double) exp)); 

} 

To reassemble a long floating-point word in the host, treat the less significant word the same as for the 
fixed-point case above.  Take the bottom 12 bits of the more significant word (MSW & 4095), multiply 
by 16,777,216 and add to the masked less significant word.  This forms the mantissa of the floating-point 
value.  Now take the next 12 bits (MSW & 16773120) of the more significant word.  This is the exponent 
to the power of two, which can be combined with the mantissa to form the complete value. 
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